首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incorporation of prior information about θ, where θ is the success probability in a binomial sampling model, is an essential feature of Bayesian statistics. Methodology based on information-theoretic concepts is introduced which (a) quantifies the amount of information provided by the sample data relative to that provided by the prior distribution and (b) allows for a ranking of prior distributions with respect to conservativeness, where conservatism refers to restraint of extraneous information about θ which is embedded in any prior distribution. In effect, the most conservative prior distribution from a specified class (each member o f which carries the available prior information about θ) is that prior distribution within the class over which the likelihood function has the greatest average domination. The most conservative prior distributions from five different families of prior distributions over the interval (0,1) including the beta distribution are determined and compared for three situations: (1) no prior estimate of θ is available, (2) a prior point estimate or θ is available, and (3) a prior interval estimate of θ is available. The results of the comparisons not only advocate the use of the beta prior distribution in binomial sampling but also indicate which particular one to use in the three aforementioned situations.  相似文献   

2.
A Bayesian approach is considered to study the change point problems. A hypothesis for testing change versus no change is considered using the notion of predictive distributions. Bayes factors are developed for change versus no change in the exponential families of distributions with conjugate priors. Under vague prior information, both Bayes factors and pseudo Bayes factors are considered. A new result is developed which describes how the overall Bayes factor has a decomposition into Bayes factors at each point. Finally, an example is provided in which the computations are performed using the concept of imaginary observations.  相似文献   

3.
A Bayesian test for the point null testing problem in the multivariate case is developed. A procedure to get the mixed distribution using the prior density is suggested. For comparisons between the Bayesian and classical approaches, lower bounds on posterior probabilities of the null hypothesis, over some reasonable classes of prior distributions, are computed and compared with the p-value of the classical test. With our procedure, a better approximation is obtained because the p-value is in the range of the Bayesian measures of evidence.  相似文献   

4.
This article focused on the definition and the study of a binary Bayesian criterion which measures a statistical agreement between a subjective prior and data information. The setting of this work is concrete Bayesian studies. It is an alternative and a complementary tool to the method recently proposed by Evans and Moshonov, [M. Evans and H. Moshonov, Checking for Prior-data conflict, Bayesian Anal. 1 (2006), pp. 893–914]. Both methods try to help the work of the Bayesian analyst, from preliminary to the posterior computation. Our criterion is defined as a ratio of Kullback–Leibler divergences; two of its main features are to make easy the check of a hierarchical prior and be used as a default calibration tool to obtain flat but proper priors in applications. Discrete and continuous distributions exemplify the approach and an industrial case study in reliability, involving the Weibull distribution, is highlighted.  相似文献   

5.
In the Bayesian analysis of a multiple-recapture census, different diffuse prior distributions can lead to markedly different inferences about the population size N. Through consideration of the Fisher information matrix it is shown that the number of captures in each sample typically provides little information about N. This suggests that if there is no prior information about capture probabilities, then knowledge of just the sample sizes and not the number of recaptures should leave the distribution of Nunchanged. A prior model that has this property is identified and the posterior distribution is examined. In particular, asymptotic estimates of the posterior mean and variance are derived. Differences between Bayesian and classical point and interval estimators are illustrated through examples.  相似文献   

6.
Abstract. The modelling process in Bayesian Statistics constitutes the fundamental stage of the analysis, since depending on the chosen probability laws the inferences may vary considerably. This is particularly true when conflicts arise between two or more sources of information. For instance, inference in the presence of an outlier (which conflicts with the information provided by the other observations) can be highly dependent on the assumed sampling distribution. When heavy‐tailed (e.g. t) distributions are used, outliers may be rejected whereas this kind of robust inference is not available when we use light‐tailed (e.g. normal) distributions. A long literature has established sufficient conditions on location‐parameter models to resolve conflict in various ways. In this work, we consider a location–scale parameter structure, which is more complex than the single parameter cases because conflicts can arise between three sources of information, namely the likelihood, the prior distribution for the location parameter and the prior for the scale parameter. We establish sufficient conditions on the distributions in a location–scale model to resolve conflicts in different ways as a single observation tends to infinity. In addition, for each case, we explicitly give the limiting posterior distributions as the conflict becomes more extreme.  相似文献   

7.
Summary.  The paper proposes two Bayesian approaches to non-parametric monotone function estimation. The first approach uses a hierarchical Bayes framework and a characterization of smooth monotone functions given by Ramsay that allows unconstrained estimation. The second approach uses a Bayesian regression spline model of Smith and Kohn with a mixture distribution of constrained normal distributions as the prior for the regression coefficients to ensure the monotonicity of the resulting function estimate. The small sample properties of the two function estimators across a range of functions are provided via simulation and compared with existing methods. Asymptotic results are also given that show that Bayesian methods provide consistent function estimators for a large class of smooth functions. An example is provided involving economic demand functions that illustrates the application of the constrained regression spline estimator in the context of a multiple-regression model where two functions are constrained to be monotone.  相似文献   

8.
We study a Bayesian approach to recovering the initial condition for the heat equation from noisy observations of the solution at a later time. We consider a class of prior distributions indexed by a parameter quantifying “smoothness” and show that the corresponding posterior distributions contract around the true parameter at a rate that depends on the smoothness of the true initial condition and the smoothness and scale of the prior. Correct combinations of these characteristics lead to the optimal minimax rate. One type of priors leads to a rate-adaptive Bayesian procedure. The frequentist coverage of credible sets is shown to depend on the combination of the prior and true parameter as well, with smoother priors leading to zero coverage and rougher priors to (extremely) conservative results. In the latter case, credible sets are much larger than frequentist confidence sets, in that the ratio of diameters diverges to infinity. The results are numerically illustrated by a simulated data example.  相似文献   

9.
Kontkanen  P.  Myllymäki  P.  Silander  T.  Tirri  H.  Grünwald  P. 《Statistics and Computing》2000,10(1):39-54
In this paper we are interested in discrete prediction problems for a decision-theoretic setting, where the task is to compute the predictive distribution for a finite set of possible alternatives. This question is first addressed in a general Bayesian framework, where we consider a set of probability distributions defined by some parametric model class. Given a prior distribution on the model parameters and a set of sample data, one possible approach for determining a predictive distribution is to fix the parameters to the instantiation with the maximum a posteriori probability. A more accurate predictive distribution can be obtained by computing the evidence (marginal likelihood), i.e., the integral over all the individual parameter instantiations. As an alternative to these two approaches, we demonstrate how to use Rissanen's new definition of stochastic complexity for determining predictive distributions, and show how the evidence predictive distribution with Jeffrey's prior approaches the new stochastic complexity predictive distribution in the limit with increasing amount of sample data. To compare the alternative approaches in practice, each of the predictive distributions discussed is instantiated in the Bayesian network model family case. In particular, to determine Jeffrey's prior for this model family, we show how to compute the (expected) Fisher information matrix for a fixed but arbitrary Bayesian network structure. In the empirical part of the paper the predictive distributions are compared by using the simple tree-structured Naive Bayes model, which is used in the experiments for computational reasons. The experimentation with several public domain classification datasets suggest that the evidence approach produces the most accurate predictions in the log-score sense. The evidence-based methods are also quite robust in the sense that they predict surprisingly well even when only a small fraction of the full training set is used.  相似文献   

10.
Block and Basu bivariate exponential distribution is one of the most popular absolute continuous bivariate distributions. Recently, Kundu and Gupta [A class of absolute continuous bivariate distributions. Statist Methodol. 2010;7:464–477] introduced Block and Basu bivariate Weibull (BBBW) distribution, which is a generalization of the Block and Basu bivariate exponential distribution, and provided the maximum likelihood estimators using EM algorithm. In this paper, we consider the Bayesian inference of the unknown parameters of the BBBW distribution. The Bayes estimators are obtained with respect to the squared error loss function, and the prior distributions allow for prior dependence among the unknown parameters. Prior independence also can be obtained as a special case. It is observed that the Bayes estimators of the unknown parameters cannot be obtained in explicit forms. We propose to use the importance sampling technique to compute the Bayes estimates and also to construct the associated highest posterior density credible intervals. The analysis of two data sets has been performed for illustrative purposes. The performances of the proposed estimators are quite satisfactory. Finally, we generalize the results for the multivariate case.  相似文献   

11.
The purpose of the paper, is to explain how recent advances in Markov Chain Monte Carlo integration can facilitate the routine Bayesian analysis of the linear model when the prior distribution is completely user dependent. The method is based on a Metropolis-Hastings algorithm with a Student-t source distribution that can generate posterior moments as well as marginal posterior densities for model parameters. The method is illustrated with numerical examples where the combination of prior and likelihood information leads to multimodal posteriors due to prior-likelihood conflicts, and to cases where prior information can be summarized by symmetric stable Paretian distributions.  相似文献   

12.
The purpose of the paper is to estimate the parameters of the two-component mixture of Weibull distribution under doubly censored samples using Bayesian approach. The choice of Weibull distribution is made due to its (i) capability to model failure time data from engineering, medical and biological sciences (ii) added advantages over the well-known lifetime distributions such as exponential, Raleigh, lognormal and gamma distribution in terms of flexibility, increasing and decreasing hazard rate and closed-form distribution function and hazard rate. The proposed two-component mixture of Weibull distribution is even more flexible than its conventional form. However, the estimation of the parameters from the proposed mixture is more complex. Further, we have assumed couple of loss functions under non informative prior for the Bayesian analysis of the parameters from the mixture model. As the resultant Bayes estimators and associated posterior risks cannot be derived in the closed form, we have used the importance sampling and Lindley’s approximation to obtain the approximate estimates for the parameters of the mixture model. The comparison between the performances of approximation techniques has been made on the basis of simulation study and real-life data analysis. The importance sampling is found to be better than Lindley’s approximation as it gives better estimation for shape and mixing parameters of the mixture model and computations under this technique are much easier/shorter than those under Lindley’s approximation.  相似文献   

13.
We develop an easy and direct way to define and compute the fiducial distribution of a real parameter for both continuous and discrete exponential families. Furthermore, such a distribution satisfies the requirements to be considered a confidence distribution. Many examples are provided for models, which, although very simple, are widely used in applications. A characterization of the families for which the fiducial distribution coincides with a Bayesian posterior is given, and the strict connection with Jeffreys prior is shown. Asymptotic expansions of fiducial distributions are obtained without any further assumptions, and again, the relationship with the objective Bayesian analysis is pointed out. Finally, using the Edgeworth expansions, we compare the coverage of the fiducial intervals with that of other common intervals, proving the good behaviour of the former.  相似文献   

14.
Bivariate count data arise in several different disciplines (epidemiology, marketing, sports statistics just to name a few) and the bivariate Poisson distribution being a generalization of the Poisson distribution plays an important role in modelling such data. In the present paper we present a Bayesian estimation approach for the parameters of the bivariate Poisson model and provide the posterior distributions in closed forms. It is shown that the joint posterior distributions are finite mixtures of conditionally independent gamma distributions for which their full form can be easily deduced by a recursively updating scheme. Thus, the need of applying computationally demanding MCMC schemes for Bayesian inference in such models will be removed, since direct sampling from the posterior will become available, even in cases where the posterior distribution of functions of the parameters is not available in closed form. In addition, we define a class of prior distributions that possess an interesting conjugacy property which extends the typical notion of conjugacy, in the sense that both prior and posteriors belong to the same family of finite mixture models but with different number of components. Extension to certain other models including multivariate models or models with other marginal distributions are discussed.  相似文献   

15.
The Simon's two‐stage design is the most commonly applied among multi‐stage designs in phase IIA clinical trials. It combines the sample sizes at the two stages in order to minimize either the expected or the maximum sample size. When the uncertainty about pre‐trial beliefs on the expected or desired response rate is high, a Bayesian alternative should be considered since it allows to deal with the entire distribution of the parameter of interest in a more natural way. In this setting, a crucial issue is how to construct a distribution from the available summaries to use as a clinical prior in a Bayesian design. In this work, we explore the Bayesian counterparts of the Simon's two‐stage design based on the predictive version of the single threshold design. This design requires specifying two prior distributions: the analysis prior, which is used to compute the posterior probabilities, and the design prior, which is employed to obtain the prior predictive distribution. While the usual approach is to build beta priors for carrying out a conjugate analysis, we derived both the analysis and the design distributions through linear combinations of B‐splines. The motivating example is the planning of the phase IIA two‐stage trial on anti‐HER2 DNA vaccine in breast cancer, where initial beliefs formed from elicited experts' opinions and historical data showed a high level of uncertainty. In a sample size determination problem, the impact of different priors is evaluated.  相似文献   

16.
A general class of Bayesian estimators for several Binomial parameters is proposed. The estimati on procedures are based on a logistic transformation of the parameters and a class of symmetric prior distributions.  相似文献   

17.
The paper revisits the concept of a power series distribution by defining its series function, its power parameter, and hence its probability generating function. Realization that the series function for a particular distribution is a special case of a recognized mathematical function enables distributions to be classified into families. Examples are the generalized hypergeometric family and the q-series family, both of which contain generalizations of the geometric distribution. The Lerch function (a third generalization of the geometric series) is the series function for the Lerch family. A list of distributions belonging to the Lerch family is provided.  相似文献   

18.
The problem of inference based on a rounded random sample from the exponential distribution is treated. The main results are given by an explicit expression for the maximum-likelihood estimator, a confidence interval with a guaranteed level of confidence, and a conjugate class of distributions for Bayesian analysis. These results are exemplified on two concrete examples. The large and increasing body of results on the topic of grouped data has been mostly focused on the effect on the estimators. The methods and results for the derivation of confidence intervals here are hence of some general theoretical value as a model approach for other parametric models. The Bayesian credibility interval recommended in cases with a lack of other prior information follows by letting the prior equal the inverted exponential with a scale equal to one divided by the resolution. It is shown that this corresponds to the standard non-informative prior for the scale in the case of non-rounded data. For cases with the absence of explicit prior information it is argued that the inverted exponential prior with a scale given by the resolution is a reasonable choice for more general digitized scale families also.  相似文献   

19.
In this article, Bayesian approach is applied to estimate the parameters of Log-logistic distribution under reference prior and Jeffreys’ prior. The reference prior is derived and it is found that the reference prior is also a second-order matching priors as for the case of any parameter of interest. The Bayesian estimators cannot be obtained in explicit forms. Metropolis within Gibbs sampling algorithm is used to obtain the Bayesian estimators. The Bayesian estimates are compared with the maximum likelihood estimates via simulation study. A real dataset is considered for illustrative purposes.  相似文献   

20.
《统计学通讯:理论与方法》2012,41(16-17):2944-2958
The focus of this article is on the choice of suitable prior distributions for item parameters within item response theory (IRT) models. In particular, the use of empirical prior distributions for item parameters is proposed. Firstly, regression trees are implemented in order to build informative empirical prior distributions. Secondly, model estimation is conducted within a fully Bayesian approach through the Gibbs sampler, which makes estimation feasible also with increasingly complex models. The main results show that item parameter recovery is improved with the introduction of empirical prior information about item parameters, also when only a small sample is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号