首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Autoregressive model is a popular method for analysing the time dependent data, where selection of order parameter is imperative. Two commonly used selection criteria are the Akaike information criterion (AIC) and the Bayesian information criterion (BIC), which are known to suffer the potential problems regarding overfit and underfit, respectively. To our knowledge, there does not exist a criterion in the literature that can satisfactorily perform under various situations. Therefore, in this paper, we focus on forecasting the future values of an observed time series and propose an adaptive idea to combine the advantages of AIC and BIC but to mitigate their weaknesses based on the concept of generalized degrees of freedom. Instead of applying a fixed criterion to select the order parameter, we propose an approximately unbiased estimator of mean squared prediction errors based on a data perturbation technique for fairly comparing between AIC and BIC. Then use the selected criterion to determine the final order parameter. Some numerical experiments are performed to show the superiority of the proposed method and a real data set of the retail price index of China from 1952 to 2008 is also applied for illustration.  相似文献   

3.
An adaptive variable selection procedure is proposed which uses an adaptive test along with a stepwise procedure to select variables for a multiple regression model. We compared this adaptive stepwise procedure to methods that use Akaike's information criterion, Schwartz's information criterion, and Sawa's information criterion. The simulation studies demonstrated that the adaptive stepwise method is more effective than the traditional variable selection methods if the error distribution is not normally distributed. If the error distribution is known to be normally distributed, the variable selection method based on Sawa's information criteria appears to be superior to the other methods. Unless the error distribution is known to be normally distributed, the adaptive stepwise method is recommended.  相似文献   

4.
Summary.  Model selection for marginal regression analysis of longitudinal data is challenging owing to the presence of correlation and the difficulty of specifying the full likelihood, particularly for correlated categorical data. The paper introduces a novel Bayesian information criterion type model selection procedure based on the quadratic inference function, which does not require the full likelihood or quasi-likelihood. With probability approaching 1, the criterion selects the most parsimonious correct model. Although a working correlation matrix is assumed, there is no need to estimate the nuisance parameters in the working correlation matrix; moreover, the model selection procedure is robust against the misspecification of the working correlation matrix. The criterion proposed can also be used to construct a data-driven Neyman smooth test for checking the goodness of fit of a postulated model. This test is especially useful and often yields much higher power in situations where the classical directional test behaves poorly. The finite sample performance of the model selection and model checking procedures is demonstrated through Monte Carlo studies and analysis of a clinical trial data set.  相似文献   

5.
This paper develops a new approach for order selection in autoregressive moving average models using the focused information criterion. This criterion minimizes the asymptotic mean squared error of the estimator of a parameter of interest. Simulation studies indicate that the suggested criterion is quite effective and comparable to the Akaike information criterion, the corrected Akaike information criterion and the Bayesian information criterion in autoregressive moving average order selection. The use of the focused information criterion for the simultaneous selection of regression variables and order of the error process in a linear regression model with autoregressive moving average errors is also considered.  相似文献   

6.
We propose a new criterion for model selection in prediction problems. The covariance inflation criterion adjusts the training error by the average covariance of the predictions and responses, when the prediction rule is applied to permuted versions of the data set. This criterion can be applied to general prediction problems (e.g. regression or classification) and to general prediction rules (e.g. stepwise regression, tree-based models and neural nets). As a by-product we obtain a measure of the effective number of parameters used by an adaptive procedure. We relate the covariance inflation criterion to other model selection procedures and illustrate its use in some regression and classification problems. We also revisit the conditional bootstrap approach to model selection.  相似文献   

7.
The autoregressive (AR) model is a popular method for fitting and prediction in analyzing time-dependent data, where selecting an accurate model among considered orders is a crucial issue. Two commonly used selection criteria are the Akaike information criterion and the Bayesian information criterion. However, the two criteria are known to suffer potential problems regarding overfit and underfit, respectively. Therefore, using them would perform well in some situations, but poorly in others. In this paper, we propose a new criterion in terms of the prediction perspective based on the concept of generalized degrees of freedom for AR model selection. We derive an approximately unbiased estimator of mean-squared prediction errors based on a data perturbation technique for selecting the order parameter, where the estimation uncertainty involved in a modeling procedure is considered. Some numerical experiments are performed to illustrate the superiority of the proposed method over some commonly used order selection criteria. Finally, the methodology is applied to a real data example to predict the weekly rate of return on the stock price of Taiwan Semiconductor Manufacturing Company and the results indicate that the proposed method is satisfactory.  相似文献   

8.
Abstract. Lasso and other regularization procedures are attractive methods for variable selection, subject to a proper choice of shrinkage parameter. Given a set of potential subsets produced by a regularization algorithm, a consistent model selection criterion is proposed to select the best one among this preselected set. The approach leads to a fast and efficient procedure for variable selection, especially in high‐dimensional settings. Model selection consistency of the suggested criterion is proven when the number of covariates d is fixed. Simulation studies suggest that the criterion still enjoys model selection consistency when d is much larger than the sample size. The simulations also show that our approach for variable selection works surprisingly well in comparison with existing competitors. The method is also applied to a real data set.  相似文献   

9.
In this paper, we extend the focused information criterion (FIC) to copula models. Copulas are often used for applications where the joint tail behavior of the variables is of particular interest, and selecting a copula that captures this well is then essential. Traditional model selection methods such as the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) aim at finding the overall best‐fitting model, which is not necessarily the one best suited for the application at hand. The FIC, on the other hand, evaluates and ranks candidate models based on the precision of their point estimates of a context‐given focus parameter. This could be any quantity of particular interest, for example, the mean, a correlation, conditional probabilities, or measures of tail dependence. We derive FIC formulae for the maximum likelihood estimator, the two‐stage maximum likelihood estimator, and the so‐called pseudo‐maximum‐likelihood (PML) estimator combined with parametric margins. Furthermore, we confirm the validity of the AIC formula for the PML estimator combined with parametric margins. To study the numerical behavior of FIC, we have carried out a simulation study, and we have also analyzed a multivariate data set pertaining to abalones. The results from the study show that the FIC successfully ranks candidate models in terms of their performance, defined as how well they estimate the focus parameter. In terms of estimation precision, FIC clearly outperforms AIC, especially when the focus parameter relates to only a specific part of the model, such as the conditional upper‐tail probability.  相似文献   

10.
This paper introduces a new information-theoretic measure of complexity called ICOMP as a decision rule for model selection and evaluation for multivariate linear models. The development of ICOMP is based on the generalization and utilization of the covariance complexity index of van Emden (1971) in estimation of the multivariate linear model. ICOMP is motivated by Akaike's (1973) Information Criterion (AIC), but it is a different procedure than AIC. In linear or nonlinear statistical models ICOMP uses an information-based characterization of: (i) the covariance matrix properties of the parameter estimates of a model starting from their finite sampling distributions, and (ii) the complexity of the inverse-Fisher information matrix (i-FIM) as a new criterion of achievable accuracy of the model As a result, it provides a trade-off between the accuracy of the parameter estimates and the interaction of the residuals of a model via the measure of complexity of their respective covariances. It controls the risks of both insufficient and overparameterized models, and incorporates the assumption of dependence and the independence of the residuals in one criterion function. A model with minimum ICOMP is chosen to be the best model among all possible competing alternative models. ICOMP relieves the researcher of any need to consider the parameter dimension of a model explicitly. A real numerical example is shown in subset selection of variables in multivariate regression analysis to demonstrate the utility and versatility of the new approach.  相似文献   

11.
Regularized variable selection is a powerful tool for identifying the true regression model from a large number of candidates by applying penalties to the objective functions. The penalty functions typically involve a tuning parameter that controls the complexity of the selected model. The ability of the regularized variable selection methods to identify the true model critically depends on the correct choice of the tuning parameter. In this study, we develop a consistent tuning parameter selection method for regularized Cox's proportional hazards model with a diverging number of parameters. The tuning parameter is selected by minimizing the generalized information criterion. We prove that, for any penalty that possesses the oracle property, the proposed tuning parameter selection method identifies the true model with probability approaching one as sample size increases. Its finite sample performance is evaluated by simulations. Its practical use is demonstrated in The Cancer Genome Atlas breast cancer data.  相似文献   

12.
In many conventional scientific investigations with high or ultra-high dimensional feature spaces, the relevant features, though sparse, are large in number compared with classical statistical problems, and the magnitude of their effects tapers off. It is reasonable to model the number of relevant features as a diverging sequence when sample size increases. In this paper, we investigate the properties of the extended Bayes information criterion (EBIC) (Chen and Chen, 2008) for feature selection in linear regression models with diverging number of relevant features in high or ultra-high dimensional feature spaces. The selection consistency of the EBIC in this situation is established. The application of EBIC to feature selection is considered in a SCAD cum EBIC procedure. Simulation studies are conducted to demonstrate the performance of the SCAD cum EBIC procedure in finite sample cases.  相似文献   

13.
Summary.  We propose a lag selection method for non-linear additive autoregressive models that is based on spline estimation and the Bayes information criterion. The additive structure of the autoregression function is used to overcome the 'curse of dimensionality', whereas the spline estimators effectively take into account such a structure in estimation. A stepwise procedure is suggested to implement the method proposed. A comprehensive Monte Carlo study demonstrates good performance of the method proposed and a substantial computational advantage over existing local-polynomial-based methods. Consistency of the lag selection method based on the Bayes information criterion is established under the assumption that the observations are from a stochastic process that is strictly stationary and strongly mixing, which provides the first theoretical result of this kind for spline smoothing of weakly dependent data.  相似文献   

14.
This paper proposes an adaptive model selection criterion with a data-driven penalty term. We treat model selection as an equality constrained minimization problem and develop an adaptive model selection procedure based on the Lagrange optimization method. In contrast to Akaike's information criterion (AIC), Bayesian information criterion (BIC) and most other existing criteria, this new criterion is to minimize the model size and take a measure of lack-of-fit as an adaptive penalty. Both theoretical results and simulations illustrate the power of this criterion with respect to consistency and pointwise asymptotic loss efficiency in the parametric and nonparametric cases.  相似文献   

15.
Panel count data arise in many fields and a number of estimation procedures have been developed along with two procedures for variable selection. In this paper, we discuss model selection and parameter estimation together. For the former, a focused information criterion (FIC) is presented and for the latter, a frequentist model average (FMA) estimation procedure is developed. A main advantage, also the difference from the existing model selection methods, of the FIC is that it emphasizes the accuracy of the estimation of the parameters of interest, rather than all parameters. Further efficiency gain can be achieved by the FMA estimation procedure as unlike existing methods, it takes into account the variability in the stage of model selection. Asymptotic properties of the proposed estimators are established, and a simulation study conducted suggests that the proposed methods work well for practical situations. An illustrative example is also provided. © 2014 Board of the Foundation of the Scandinavian Journal of Statistics  相似文献   

16.
Recent literature provides many computational and modeling approaches for covariance matrices estimation in a penalized Gaussian graphical models but relatively little study has been carried out on the choice of the tuning parameter. This paper tries to fill this gap by focusing on the problem of shrinkage parameter selection when estimating sparse precision matrices using the penalized likelihood approach. Previous approaches typically used K-fold cross-validation in this regard. In this paper, we first derived the generalized approximate cross-validation for tuning parameter selection which is not only a more computationally efficient alternative, but also achieves smaller error rate for model fitting compared to leave-one-out cross-validation. For consistency in the selection of nonzero entries in the precision matrix, we employ a Bayesian information criterion which provably can identify the nonzero conditional correlations in the Gaussian model. Our simulations demonstrate the general superiority of the two proposed selectors in comparison with leave-one-out cross-validation, 10-fold cross-validation and Akaike information criterion.  相似文献   

17.
This paper considers variable and factor selection in factor analysis. We treat the factor loadings for each observable variable as a group, and introduce a weighted sparse group lasso penalty to the complete log-likelihood. The proposal simultaneously selects observable variables and latent factors of a factor analysis model in a data-driven fashion; it produces a more flexible and sparse factor loading structure than existing methods. For parameter estimation, we derive an expectation-maximization algorithm that optimizes the penalized log-likelihood. The tuning parameters of the procedure are selected by a likelihood cross-validation criterion that yields satisfactory results in various simulation settings. Simulation results reveal that the proposed method can better identify the possibly sparse structure of the true factor loading matrix with higher estimation accuracy than existing methods. A real data example is also presented to demonstrate its performance in practice.  相似文献   

18.
In order to explore and compare a finite number T of data sets by applying functional principal component analysis (FPCA) to the T associated probability density functions, we estimate these density functions by using the multivariate kernel method. The data set sizes being fixed, we study the behaviour of this FPCA under the assumption that all the bandwidth matrices used in the estimation of densities are proportional to a common parameter h and proportional to either the variance matrices or the identity matrix. In this context, we propose a selection criterion of the parameter h which depends only on the data and the FPCA method. Then, on simulated examples, we compare the quality of approximation of the FPCA when the bandwidth matrices are selected using either the previous criterion or two other classical bandwidth selection methods, that is, a plug-in or a cross-validation method.  相似文献   

19.
This paper considers a linear regression model with regression parameter vector β. The parameter of interest is θ= aTβ where a is specified. When, as a first step, a data‐based variable selection (e.g. minimum Akaike information criterion) is used to select a model, it is common statistical practice to then carry out inference about θ, using the same data, based on the (false) assumption that the selected model had been provided a priori. The paper considers a confidence interval for θ with nominal coverage 1 ‐ α constructed on this (false) assumption, and calls this the naive 1 ‐ α confidence interval. The minimum coverage probability of this confidence interval can be calculated for simple variable selection procedures involving only a single variable. However, the kinds of variable selection procedures used in practice are typically much more complicated. For the real‐life data presented in this paper, there are 20 variables each of which is to be either included or not, leading to 220 different models. The coverage probability at any given value of the parameters provides an upper bound on the minimum coverage probability of the naive confidence interval. This paper derives a new Monte Carlo simulation estimator of the coverage probability, which uses conditioning for variance reduction. For these real‐life data, the gain in efficiency of this Monte Carlo simulation due to conditioning ranged from 2 to 6. The paper also presents a simple one‐dimensional search strategy for parameter values at which the coverage probability is relatively small. For these real‐life data, this search leads to parameter values for which the coverage probability of the naive 0.95 confidence interval is 0.79 for variable selection using the Akaike information criterion and 0.70 for variable selection using Bayes information criterion, showing that these confidence intervals are completely inadequate.  相似文献   

20.
ABSTRACT

In this paper, we study a novelly robust variable selection and parametric component identification simultaneously in varying coefficient models. The proposed estimator is based on spline approximation and two smoothly clipped absolute deviation (SCAD) penalties through rank regression, which is robust with respect to heavy-tailed errors or outliers in the response. Furthermore, when the tuning parameter is chosen by modified BIC criterion, we show that the proposed procedure is consistent both in variable selection and the separation of varying and constant coefficients. In addition, the estimators of varying coefficients possess the optimal convergence rate under some assumptions, and the estimators of constant coefficients have the same asymptotic distribution as their counterparts obtained when the true model is known. Simulation studies and a real data example are undertaken to assess the finite sample performance of the proposed variable selection procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号