首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 854 毫秒
1.
2.
This article analyses the performance of a one-sided cumulative sum (CUSUM) chart that is initialized using a random starting point following the natural or intrinsic probability distribution of the CUSUM statistic. By definition, this probability distribution remains stable as the chart is used. The probability that the chart starts at zero according to this intrinsic distribution is always smaller than one, which confers on the chart a fast initial response feature. The article provides a fast and accurate algorithm to compute the in-control and out-of-control average run lengths and run-length probability distributions for one-sided CUSUM charts initialized using this random intrinsic fast initial response (RIFIR) scheme. The algorithm also computes the intrinsic distribution of the CUSUM statistic and random samples extracted from this distribution. Most importantly, no matter how the chart was initialized, if no level shifts and no alarms have occurred before time τ?>?0, the distribution of the run length remaining after τ is provided by this algorithm very accurately, provided that τ is not too small.  相似文献   

3.
A control chart procedure has previously been proposed (Champ et al., 1991) for which the Shewhart X ¯-chart, the cumulative sum chart, and the exponentially weighted moving average chart are special cases. The rapid and easy production of these charts, plus many others, is proposed using spreadsheets. In addition, for all these novel charts, the average run lengths are generated as a guide to their likely behaviour. The cumulative sum chart is widely employed in quality control and is considered in greater detail. Charts are designed to exhibit acceptable average run lengths both when the process is in and out of control. A functional technique for parameter selection for such a chart is introduced that results in target average run lengths. It employs the method of artificial neural networks to derive appropriate coefficients. This approach may be extended to any of the charts previously introduced.  相似文献   

4.
A control chart procedure has previously been proposed (Champ et al., 1991) for which the Shewhart X ¥ -chart, the cumulative sum chart, and the exponentially weighted moving average chart are special cases. The rapid and easy production of these charts, plus many others, is proposed using spreadsheets. In addition, for all these novel charts, the average run lengths are generated as a guide to their likely behaviour. The cumulative sum chart is widely employed in quality control and is considered in greater detail. Charts are designed to exhibit acceptable average run lengths both when the process is in and out of control. A functional technique for parameter selection for such a chart is introduced that results in target average run lengths. It employs the method of artificial neural networks to derive appropriate coefficients. This approach may be extended to any of the charts previously introduced.  相似文献   

5.
Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much service data come from a process with variables having nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, should not be properly used here. In this article, we propose an improved asymmetric EWMA mean chart based on a simple statistic to monitor process mean shift. We explored the sampling properties of the new monitoring statistic and calculated the average run lengths of the proposed asymmetric EWMA mean chart. We recommend the proposed improved asymmetric EWMA mean chart because the average run lengths of the modified charts are more accurate and reasonable than those of the five existed mean charts. A numerical example of service times with a right skewed distribution from a service system of a bank branch is used to illustrate the application of the improved asymmetric EWMA mean chart and to compare it with the five existing mean charts. The proposed chart showed better detection performance than those of the five existing mean charts in monitoring and detecting shifts in the process mean.  相似文献   

6.
It is often encountered in the literature that the log-likelihood ratios (LLR) of some distributions (e.g. the student t distribution) are not monotonic. Existing charts for monitoring such processes may suffer from the fact that the average run length (ARL) curve is a discontinuous function of control limit. It implies that some pre-specified in-control (IC) ARLs of these charts may not be reached. To guarantee the false alarm rate of a control chart lower than the nominal level, a larger IC ARL is usually suggested in the literature. However, the large IC ARL may weaken the performance of a control chart when the process is out-of-control (OC), compared with a just right IC ARL. To overcome it, we adjust the LLR to be a monotonic one in this paper. Based on it, a multiple CUSUM chart is developed to detect range shifts in IC distribution. Theoretical result in this paper ensures the continuity of its ARL curve. Numerical results show our proposed chart performs well under the range shifts, especially under the large shifts. In the end, a real data example is utilized to illustrate our proposed chart.  相似文献   

7.
ABSTRACT

Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much service data come from a process with variables having non-normal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, should not be properly used in such circumstances. In this paper, we propose a new variance chart based on a simple statistic to monitor process variance shifts. We explore the sampling properties of the new monitoring statistic and calculate the average run lengths (ARLs) of the proposed variance chart. Furthermore, an arcsine transformed exponentially weighted moving average (EWMA) chart is proposed because the ARLs of this modified chart are more intuitive and reasonable than those of the variance chart. We compare the out-of-control variance detection performance of the proposed variance chart with that of the non-parametric Mood variance (NP-M) chart with runs rules, developed by Zombade and Ghute [Nonparametric control chart for variability using runs rules. Experiment. 2014;24(4):1683–1691], and the nonparametric likelihood ratio-based distribution-free exponential weighted moving average (NLE) chart and the combination of traditional exponential weighted moving average (EWMA) mean and EWMA variance (CEW) control chart proposed by Zou and Tsung [Likelihood ratio-based distribution-free EWMA control charts. J Qual Technol. 2010;42(2):174–196] by considering cases in which the critical quality characteristic has a normal, a double exponential or a uniform distribution. Comparison results showed that the proposed chart performs better than the NP-M with runs rules, and the NLE and CEW control charts. A numerical example of service times with a right-skewed distribution from a service system of a bank branch in Taiwan is used to illustrate the application of the proposed variance chart and of the arcsine transformed EWMA chart and to compare them with three existing variance (or standard deviation) charts. The proposed charts show better detection performance than those three existing variance charts in monitoring and detecting shifts in the process variance.  相似文献   

8.
One difficulty with developing multivariate attribute control charts is the lack of the related joint distribution. So, if it would be possible to generate the joint distribution of two (or more) attribute characteristics, then a bivaraite (or multivariate) attribute control chart can be developed based on Types I and II errors. Copula function is a solution to the matter. In this article, applying the copula function approach, we achieve the joint distribution of two correlated zero inflated Poisson (ZIP) distributions. Then, using this joint distribution, we develop a bivaraite control chart which can be used for monitoring correlated rare events. This copula-based bivariate ZIP control chart is compared with the simultaneous use of two separate univariate ZIP control charts. Based on the average run length (ARL) measure, it is shown that the proposed control chart is much better than the simultaneous use of two separate univariate charts. In addition, a real case study related to the environmental air in a sterilization process is investigated to show the applicability of the developed control chart.  相似文献   

9.
10.
A generally weighted moving average (GWMA) control chart for monitoring Poisson observations is introduced. Using simulation, its average run lengths and standard deviations of run lengths are compared with those of other control charts for Poisson data. It is shown that the Poisson GWMA chart outperforms other control charts, especially when the process shift is small.  相似文献   

11.
ABSTRACT

In this article, we introduce new nonparametric Shewhart-type control charts that take into account the location of two order statistics of the test sample as well as the number of observations in that sample that lie between the control limits. Exact formulae for the alarm rate, the run length distribution and the average run length (ARL) are all derived. A key advantage of the new charts is that, due to its nonparametric nature, the false alarm rate (FAR) and in-control run length distribution is the same for all continuous process distributions. Tables are provided for the implementation of the proposed charts for some typical FAR and ARL values. Furthermore, a numerical study carried out reveals that the new charts are quite flexible and efficient in detecting shifts to Lehmann-type out-of-control situations, while they seem preferable from a robustness point of view in comparison with the distribution-free control chart of Balakrishnan et al. (2009).  相似文献   

12.
The conventional Shewhart-type control chart is developed essentially on the central limit theorem. Thus, the Shewhart-type control chart performs particularly well when the observed process data come from a near-normal distribution. On the other hand, when the underlying distribution is unknown or non-normal, the sampling distribution of a parameter estimator may not be available theoretically. In this case, the Shewhart-type charts are not available. Thus, in this paper, we propose a parametric bootstrap control chart for monitoring percentiles when process measurements have an inverse Gaussian distribution. Through extensive Monte Carlo simulations, we investigate the behaviour and performance of the proposed bootstrap percentile charts. The average run lengths of the proposed percentage charts are investigated.  相似文献   

13.
The study proposes a weighted bootstrap control chart based on the strata and determines suitable weights for each stratum by measuring the relative error of estimated Type I risks (Err). In addition to validating the detection effectiveness of the proposed control chart, this study also compares several types of control charts for detecting the Type I, Type II risks, and median run lengths. The proposed control chart shows superior detection effectiveness in six skewed distributions compared to other types of control charts.  相似文献   

14.
The generally weighted moving average (GWMA) control chart is an extension model of exponentially weighted moving average (EWMA) control chart. Recently, some approaches have been proposed to modify EWMA charts with fast initial response (FIR) features. We introduce these approaches in GWMA-type charts. Via simulation, various control schemes are designed and then their average run lengths are computed and compared. Based on the overall performance, it is showed that the DGWMA chart is the best choice especially when the shift is moderate, and the GWMA charts provided with additional FIR feature have a good performance only in detecting large shifts during the initial stage.  相似文献   

15.
A new control chart is proposed by using the belief statistic for the exponential distribution. The structure of the proposed control chart is given to measure the average run length for the shifted process. The comparison of the proposed chart is given with the existing charts in terms of the average run lengths, which shows the outperformance of the proposed chart. The performance of the proposed control chart is also discussed with the help of simulated data.  相似文献   

16.
The Weibull distribution is one of the most popular distributions for lifetime modeling. However, there has not been much research on control charts for a Weibull distribution. Shewhart control is known to be inefficient to detect a small shift in the process, while exponentially weighted moving average (EWMA) and cumulative sum control chart (CUSUM) charts have the ability to detect small changes in the process. To enhance the performance of a control chart for a Weibull distribution, we introduce a new control chart based on hybrid EWMA and CUSUM statistic, called the HEWMA-CUSUM chart. The performance of the proposed chart is compared with the existing chart in terms of the average run length (ARL). The proposed chart is found to be more sensitive than the existing chart in ARL. A simulation study is provided for illustration purposes. A real data is also applied to the proposed chart for practical use.  相似文献   

17.
Average run lengths of the zone control chart are presented, The performance of this chart is compared with that of several Shewhart charts with and without runs rules, It is shown that the standard zone control chart has performance similar to some even simpler charts and a much higher false alarm rate than the Shewhart chart with all of the common runs rules. It is also shown that a slightly modified zone control chart outperforms the Shewhart chart with the common runs rules.  相似文献   

18.
A general model for the zone control chart is presented. Using this model, it is shown that there are score vectors for zone control charts which result in superior average run length performance in comparison to Shewhart charts with common runs rules.

A fast initial response (FIR) feature for the zone control chart is also proposed. Average run lengths of the zone control chart with this feature are calculated. It is shown that the FIR feature improves zone control chart performance by providing significantly earlier signals when the process is out of control.  相似文献   

19.
Some control charts have been proposed to monitor the mean of a Weibull process with type-I censoring. One type of control charts is to monitor changes in the scale parameter because it indicates changes in the mean. With this approach, we compare different control charts such as Shewhart-type and exponentially weighted moving average (EWMA) charts based on conditional expected value (CEV) and cumulative sum (CUSUM) chart based on likelihood-ratio. A simulation approach is employed to compute control limits and average run lengths. The results show that the CUSUM chart has the best performance. However, the EWMA-CEV chart is recommendable for practitioners with its competitive performance and ease of use advantage. An illustrative example is also provided.  相似文献   

20.
In this article, we introduce three new distribution-free Shewhart-type control charts that exploit run and Wilcoxon-type rank-sum statistics to detect possible shifts of a monitored process. Exact formulae for the alarm rate, the run length distribution, and the average run length (ARL) are all derived. A key advantage of these charts is that, due to their nonparametric nature, the false alarm rate (FAR) and in-control run length distribution is the same for all continuous process distributions. Tables are provided for the implementation of the charts for some typical FAR values. Furthermore, a numerical study carried out reveals that the new charts are quite flexible and efficient in detecting shifts to Lehmann-type out-of-control situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号