首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Bartlett's test (1937) for equality of variances is based on the χ2 distribution approximation. This approximation deteriorates either when the sample size is small (particularly < 4) or when the population number is large. According to a simulation investigation, we find a similar varying trend for the mean differences between empirical distributions of Bartlett's statistics and their χ2 approximations. By using the mean differences to represent the distribution departures, a simple adjustment approach on the Bartlett's statistic is proposed on the basis of equal mean principle. The performance before and after adjustment is extensively investigated under equal and unequal sample sizes, with number of populations varying from 3 to 100. Compared with the traditional Bartlett's statistic, the adjusted statistic is distributed more closely to χ2 distribution, for homogeneity samples from normal populations. The type I error is well controlled and the power is a little higher after adjustment. In conclusion, the adjustment has good control on the type I error and higher power, and thus is recommended for small samples and large population number when underlying distribution is normal.  相似文献   

2.
Let π1,…,πp be p independent normal populations with means μ1…, μp and variances σ21,…, σ2p respectively. Let X(ni) be a simple random sample of size ni from πi, i = 1,…,p. Given the simple random samples X(n1),…, X(np) from π1,…,πp respectively, a test has been proposed for testing the homogeneity of variances H0: σ21=…σ2p, against the restricted alternative, H1: σ21≥…≥σ2p, with at least one strict inequality. Some properties of the test are discussed and critical values are tabulated.  相似文献   

3.
ABSTRACT

A simple test based on Gini's mean difference is proposed to test the hypothesis of equality of population variances. Using 2000 replicated samples and empirical distributions, we show that the test compares favourably with Bartlett's and Levene's test for the normal population. Also, it is more powerful than Bartlett's and Levene's tests for some alternative hypotheses for some non-normal distributions and more robust than the other two tests for large sample sizes under some alternative hypotheses. We also give an approximate distribution to the test statistic to enable one to calculate the nominal levels and P-values.  相似文献   

4.
A variance homogeneity test for type II right-censored samples is proposed. The test is based on Bartlett's statistic. The asymptotic distribution of the statistic is investigated. The limiting distribution is that of a linear combination of i.i.d. chi-square variables with 1 degree of freedom. By using simulation, the critical values of the null distribution of the modified Bartlett's statistic for testing the homogeneity of variances of two normal populations are obtained when the sample sizes and censoring levels are not equal. Also, we investigate the properties of the proposed test (size, power and robustness). Results show that the distribution of the test statistic depends on the censoring level. An example of the use of the new methodology in animal science involving reproduction in ewes is provided.  相似文献   

5.
The paper compares several methods for computing robust 1-α confidence intervals for σ 1 2-σ 2 2, or σ 1 2/σ 2 2, where σ 1 2 and σ 2 2 are the population variances corresponding to two independent treatment groups. The emphasis is on a Box-Scheffe approach when distributions have different shapes, and so the results reported here have implications about comparing means. The main result is that for unequal sample sizes, a Box-Scheffe approach can be considerably less robust than indicated by past investigations. Several other procedures for comparing variances, not based on a Box-Scheffe approach, were also examined and found to be highly unsatisfactory although previously published papers found them to be robust when the distributions have identical shapes. Included is a new result on why the procedures examined here are not robust, and an illustration that increasing σ 1 2-σ 2 2 can reduce power in certain situations. Constants needed to apply Dunnett’s robust comparison of means are included.  相似文献   

6.
After pointing out a drawback in Bartlett's chi-square approximation, we suggest a simple modification and a Gamma approximation to improve Bartlett's M test for homogeneity of variances.  相似文献   

7.
A necessary and sufficient condition for unbiasedness of the test of homogeneity of variances in normal samples is derived in a convenient form. In the case of two samples, it is shown that Bartlett's test is the only unbiased test of homogeneity of variances. A simple alternative proof of the unbiasedness of Bartlett's test in the general case is also provided.  相似文献   

8.
We develop a ‘robust’ statistic T2 R, based on Tiku's (1967, 1980) MML (modified maximum likelihood) estimators of location and scale parameters, for testing an assumed meam vector of a symmetric multivariate distribution. We show that T2 R is one the whole considerably more powerful than the prominenet Hotelling T2 statistics. We also develop a robust statistic T2 D for testing that two multivariate distributions (skew or symmetric) are identical; T2 D seems to be usually more powerful than nonparametric statistics. The only assumption we make is that the marginal distributions are of the type (1/σk)f((x-μk)/σk) and the means and variances of these marginal distributions exist.  相似文献   

9.
The Kolmogorov-Smirnov (K–S) one-sided and two-sided tests of goodness of fit based on the test statistics D+ n D? n and Dn are equivalent to tests based on taking the cumulative probability of the i–th order statistic of a sample of size n to be (i–.5)/n. Modified test statistics C+ n, C? n and Cn are obtained by taking the cumulative probability to be i/(n+l). More generally, the cumula-tive probability may be taken to be (i?δ)/(n+l?2δ), as suggested by Blom (1958), where 0 less than or equal δ less than or equal .5. Critical values of the test statis-tics can be found by interpolating inversely in tables of the proba-bility integrals obtained by setting a=l/(n+l?2δ) in an expression given by Pyke (1959). Critical values for the D's (corresponding to δ=.5) have been tabulated to 5DP by Miller (1956) for n=1(1)100. The authors have made analogous tabulations for the C's (corresponding to δ=0) [previously tabulated by Durbin (1969) for n=1(1)60(2)100] and for the test statistics E+ n, E? n and En corresponding to δ f.3. They have also made a Monte Carlo comparison of the power of the modified tests with that of the K–S test for several hypothetical distributions. In a number of cases, the power of the modified tests is greater than that of the K–S test, especially when the standard deviation is greater under the alternative than under the null hypo-thesis.  相似文献   

10.
Power studies of tests of equality of covariance matrices of two p-variate complex normal populations σ1 = σ2 against two-sided alternatives have been made based on the following five criteria: (1) Roy's largest root, (2) Hotelling's trace, (4) Wilks' criterion and (5) Roy's largest and smallest roots. Some theorems on transformations and Jacobians in the two-sample complex Gaussian case have been proved in order to obtain a general theorem for establishing the local unbiasedness conditions connecting the two critical values for tests (1)–(5). Extensive unbiased power tabulations have been made for p=2, for various values of n1, n2, λ1 and λ2 where n1 is the df of the SP matrix from the ith sample and λ1 is the ith latent root of σ1σ-12 (i=1, 2). Equal tail areas approach has also been used further to compute powers of tests (1)–(4) for p=2 for studying the bias and facilitating comparisons with powers in the unbiased case. The inferences have been found similar to those in the real case. (Chu and Pillai, Ann. Inst. Statist. Math. 31.  相似文献   

11.
Consider k( ? 2) normal populations whose means are all known or unknown and whose variances are unknown. Let σ2[1] ? ??? ? σ[k]2 denote the ordered variances. Our goal is to select a non empty subset of the k populations whose size is at most m(1 ? m ? k ? 1) so that the population associated with the smallest variance (called the best population) is included in the selected subset with a guaranteed minimum probability P* whenever σ2[2][1]2 ? δ* > 1, where P* and δ* are specified in advance of the experiment. Based on samples of size n from each of the populations, we propose and investigate a procedure called RBCP. We also derive some asymptotic results for our procedure. Some comparisons with an earlier available procedure are presented in terms of the average subset sizes for selected slippage configurations based on simulations. The results are illustrated by an example.  相似文献   

12.
Generalized variance is a measure of dispersion of multivariate data. Comparison of dispersion of multivariate data is one of the favorite issues for multivariate quality control, generalized homogeneity of multidimensional scatter, etc. In this article, the problem of testing equality of generalized variances of k multivariate normal populations by using the Bartlett's modified likelihood ratio test (BMLRT) is proposed. Simulations to compare the Type I error rate and power of the BMLRT and the likelihood ratio test (LRT) methods are performed. These simulations show that the BMLRT method has a better chi-square approximation under the null hypothesis. Finally, a practical example is given.  相似文献   

13.
Hartley's test for homogeneity of k normal‐distribution variances is based on the ratio between the maximum sample variance and the minimum sample variance. In this paper, the author uses the same statistic to test for equivalence of k variances. Equivalence is defined in terms of the ratio between the maximum and minimum population variances, and one concludes equivalence when Hartley's ratio is small. Exact critical values for this test are obtained by using an integral expression for the power function and some theoretical results about the power function. These exact critical values are available both when sample sizes are equal and when sample sizes are unequal. One related result in the paper is that Hartley's test for homogeneity of variances is no longer unbiased when the sample sizes are unequal. The Canadian Journal of Statistics 38: 647–664; 2010 © 2010 Statistical Society of Canada  相似文献   

14.
In this paper, we propose a nonparametric method based on jackknife empirical likelihood ratio to test the equality of two variances. The asymptotic distribution of the test statistic has been shown to follow χ2 distribution with the degree of freedom 1. Simulations have been conducted to show the type I error and the power compared to Levene's test and F test under different distribution settings. The proposed method has been applied to a real data set to illustrate the testing procedure.  相似文献   

15.
Let X1,X2,… be independent and identically distributed nonnegative random variables with mean μ, and let Sn = X1 + … + Xn. For each λ > 0 and each n ≥ 1, let An be the interval [λnY, ∞), where γ > 1 is a constant. The number of times that Sn is in An is denoted by N. As λ tends to zero, the asymtotic behavior of N is studied. Specifically under suitable conditions, the expectation of N is shown to be (μλ?1)β + o(λ?β/2 where β = 1/(γ-1) and the variance of N is shown to be (μλ?1)β(βμ1)2σ2 + o(λ) where σ2 is the variance of Xn.  相似文献   

16.
We consider the problem of testing the equality of two population means when the population variances are not necessarily equal. We propose a Welch-type statistic, say T* c, based on Tiku!s ‘1967, 1980’ modified maximum likelihood estimators, and show that this statistic is robust to symmetric and moderately skew distributions. We investigate the power properties of the statistic T* c; T* c clearly seems to be more powerful than Yuen's ‘1974’ Welch-type robust statistic based on the trimmed sample means and the matching sample variances. We show that the analogous statistics based on the ‘adaptive’ robust estimators give misleading Type I errors. We generalize the results to testing linear contrasts among k population means  相似文献   

17.
In the bivariate normal, n=2 case, when testing H0xy=0,σ2 x2 y=1, ρ=0 vs. H1xy=0,σ2 x2 y=1, 0<ρ<1, it is shown that the median p-values given by the locally most powerful test and the distantly most powerful test are both beaten everywhere by the median of a third test.  相似文献   

18.
19.
Shiue and Bain proposed an approximate F statistic for testing equality of two gamma distribution scale parameters in presence of a common and unknown shape parameter. By generalizing Shiue and Bain's statistic we develop a new statistic for testing equality of L >= 2 gamma distribution scale parameters. We derive the distribution of the new statistic ESP for L = 2 and equal sample size situation. For other situations distribution of ESP is not known and test based on the ESP statistic has to be performed by using simulated critical values. We also derive a C(α) statistic CML and develop a likelihood ratio statistic, LR, two modified likelihood ratio statistics M and MLB and a quadratic statistic Q. The distribution of each of the statistics CML, LR, M, MLB and Q is asymptotically chi-square with L - 1 degrees of freedom. We then conducted a monte-carlo simulation study to compare the perfor- mance of the statistics ESP, LR, M, MLB, CML and Q in terms of size and power. The statistics LR, M, MLB and Q are in general liberal and do not show power advantage over other statistics. The statistic CML, based on its asymptotic chi-square distribution, in general, holds nominal level well. It is most powerful or nearly most powerful in most situations and is simple to use. Hence, we recommend the statistic CML for use in general. For better power the statistic ESP, based on its empirical distribution, is recommended for the special situation for which there is evidence in the data that λ1 < … < λL and n1 < … < nL, where λ1 …, λL are the scale parameters and n1,…, nL are the sample sizes.  相似文献   

20.
Tests that combine p-values, such as Fisher's product test, are popular to test the global null hypothesis H0 that each of n component null hypotheses, H1,…,Hn, is true versus the alternative that at least one of H1,…,Hn is false, since they are more powerful than classical multiple tests such as the Bonferroni test and the Simes tests. Recent modifications of Fisher's product test, popular in the analysis of large scale genetic studies include the truncated product method (TPM) of Zaykin et al. (2002), the rank truncated product (RTP) test of Dudbridge and Koeleman (2003) and more recently, a permutation based test—the adaptive rank truncated product (ARTP) method of Yu et al. (2009). The TPM and RTP methods require users' specification of a truncation point. The ARTP method improves the performance of the RTP method by optimizing selection of the truncation point over a set of pre-specified candidate points. In this paper we extend the ARTP by proposing to use all the possible truncation points {1,…,n} as the candidate truncation points. Furthermore, we derive the theoretical probability distribution of the test statistic under the global null hypothesis H0. Simulations are conducted to compare the performance of the proposed test with the Bonferroni test, the Simes test, the RTP test, and Fisher's product test. The simulation results show that the proposed test has higher power than the Bonferroni test and the Simes test, as well as the RTP method. It is also significantly more powerful than Fisher's product test when the number of truly false hypotheses is small relative to the total number of hypotheses, and has comparable power to Fisher's product test otherwise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号