首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of autocorrelation in errors and multicollinearity among the regressors have undesirable effects on the least-squares regression. There are a wide range of methods which are proposed to overcome the usefulness of the ordinary least-squares estimator or the generalized least-squares estimator, such as the Stein-rule, restricted least-squares or ridge estimator. Therefore, we introduce a new feasible generalized restricted ridge regression (FGRR) estimator to examine multicollinearity and autocorrelation problems simultaneously for the general linear regression model. We also derive some statistical properties of the FGRR estimator and comparisons have been conducted using matrix mean-square error. Moreover, a Monte Carlo simulation experiment is performed to investigate the performance of the proposed estimator over the others.  相似文献   

2.
The purpose of this paper is two-fold. One is to compare the almost unbiased generalized ridge regression (AUGRR) estimator proposed by Singh, Chaubey and Dwivedi (1986) with the generalized ridge regression (GRR) estimator and with the ordinary least squares (OLS) estimator in terms of the mean squared error criterion. Second is to examine small sample properties of the operational almost unbiased ordinary ridge regression (AUORR) estimator by Monte Carlo experiments.  相似文献   

3.
This paper adopts a Bayesian strategy for generalized ridge estimation for high-dimensional regression. We also consider significance testing based on the proposed estimator, which is useful for selecting regressors. Both theoretical and simulation studies show that the proposed estimator can simultaneously outperform the ordinary ridge estimator and the LSE in terms of the mean square error (MSE) criterion. The simulation study also demonstrates the competitive MSE performance of our proposal with the Lasso under sparse models. We demonstrate the method using the lung cancer data involving high-dimensional microarrays.  相似文献   

4.
In regression analysis, to deal with the problem of multicollinearity, the restricted principal components regression estimator is proposed. In this paper, we compared the restricted principal components regression estimator, the principal components regression estimator, and the ordinary least-squares estimator with each other under the Pitman's closeness criterion. We showed that the restricted principal components regression estimator is always superior to the principal components regression estimator, under certain conditions the restricted principal components regression estimator is superior to the ordinary least-squares estimator under the Pitman's closeness criterion and under certain conditions the principal components regression estimator is superior to the ordinary least-squares estimator under the Pitman's closeness criterion.  相似文献   

5.
The purpose of this paper is to examine the asymptotic properties of the operational almost unbiased estimator of regression coefficients which includes almost unbiased ordinary ridge estimator a s a special case. The small distrubance approximations for the bias and mean square error matrix of the estimator are derived. As a consequence, it is proved that, under certain conditions, the estimator is more efficient than a general class of estimators given by Vinod and Ullah (1981). Also it is shown that, if the ordinary ridge estimator (ORE) dominates the ordinary least squares estimator then the almost unbiased ordinary ridge estimator does not dominate ORE under the mean square error criterion.  相似文献   

6.
In this paper we study the mean square error properties of the generalized ridge estimator. We obtain the exact and the approximate bias and the mean square error of the operational generalized ridge estimator in terms of G( ) functions. We show, among other things, that the operational generalized ridge estimator does not dominate the ordinary least squares estimator up to a certain order of approximation. Finally, we note that the iterative procedures to obtain coverging ridge estimators should be used with caution.  相似文献   

7.
Application of ordinary least-squares regression to data sets which contain multiple measurements from individual sampling units produces an unbiased estimator of the parameters but a biased estimator of the covariance matrix of the parameter estimates. The present work considers a random coefficient, linear model to deal with such data sets: this model permits many senses in which multiple measurements are taken from a sampling unit, not just when it is measured at several times. Three procedures to estimate the covariance matrix of the error term of the model are considered. Given these, three procedures to estimate the parameters of the model and their covariance matrix are considered; these are ordinary least-squares, generalized least-squares, and an adjusted ordinary least-squares procedure which produces an unbiased estimator of the covariance matrix of the parameters with small samples. These various procedures are compared in simulation studies using three examples from the biological literature. The possibility of testing hypotheses about the vector of parameters is also considered. It is found that all three procedures for regression estimation produce estimators of the parameters with bias of no practical consequence, Both generalized least-squares and adjusted ordinary least-squares generally produce estimators of the covariance matrix of the parameter estimates with bias of no practical consequence, while ordinary least-squares produces a negatively biased estimator. Neither ordinary nor generalized least-squares provide satisfactory hypothesis tests of the vector of parameter estimates. It is concluded that adjusted ordinary least-squares, when applied with either of two of the procedures used to estimate the error coveriance matrix, shows promise for practical application with data sets of the nature considered here.  相似文献   

8.
Several alternative methods for derivation of the restricted ridge regression estimator (RRRE) are provided. Theoretical comparison and relationship of RRRE with related methods for regression with the multicollinearity problem are described. We also find inter-connections among RRRE, ordinary ridge regression estimator (ORRE), restricted least squares estimator (RLSE), modified ridge regression estimator (MRRE) and restricted modified generalized ridge estimator (RMGRE). Finally, numerical comparison, in addition to theoretical derivation, is also conducted with a Monte Carlo simulation and a real data example.  相似文献   

9.
It is known that collinearity among the explanatory variables in generalized linear models (GLMs) inflates the variance of maximum likelihood estimators. To overcome multicollinearity in GLMs, ordinary ridge estimator and restricted estimator were proposed. In this study, a restricted ridge estimator is introduced by unifying the ordinary ridge estimator and the restricted estimator in GLMs and its mean squared error (MSE) properties are discussed. The MSE comparisons are done in the context of first-order approximated estimators. The results are illustrated by a numerical example and two simulation studies are conducted with Poisson and binomial responses.  相似文献   

10.
ABSTRACT

In this paper, we propose three generalized estimators, namely, generalized unrestricted estimator (GURE), generalized stochastic restricted estimator (GSRE), and generalized preliminary test stochastic restricted estimator (GPTSRE). The GURE can be used to represent the ridge estimator, almost unbiased ridge estimator (AURE), Liu estimator, and almost unbiased Liu estimator. When stochastic restrictions are available in addition to the sample information, the GSRE can be used to represent stochastic mixed ridge estimator, stochastic restricted Liu estimator, stochastic restricted almost unbiased ridge estimator, and stochastic restricted almost unbiased Liu estimator. The GPTSRE can be used to represent the preliminary test estimators based on mixed estimator. Using the GPTSRE, the properties of three other preliminary test estimators, namely preliminary test stochastic mixed ridge estimator, preliminary test stochastic restricted almost unbiased Liu estimator, and preliminary test stochastic restricted almost unbiased ridge estimator can also be discussed. The mean square error matrix criterion is used to obtain the superiority conditions to compare the estimators based on GPTSRE with some biased estimators for the two cases for which the stochastic restrictions are correct, and are not correct. Finally, a numerical example and a Monte Carlo simulation study are done to illustrate the theoretical findings of the proposed estimators.  相似文献   

11.
The ordinary least-square estimators for linear regression analysis with multicollinearity and outliers lead to unfavorable results. In this article, we propose a new robust modified ridge M-estimator (MRME) based on M-estimator (ME) to deal with the combined problem resulting from multicollinearity and outliers in the y-direction. MRME outperforms modified ridge estimator, robust ridge estimator and ME, according to mean squares error criterion. Furthermore, a numerical example and a Monte Carlo simulation experiment are given to illustrate some of the theoretical results.  相似文献   

12.
In the presence of collinearity certain biased estimation procedures like ridge regression, generalized inverse estimator, principal component regression, Liu estimator, or improved ridge and Liu estimators are used to improve the ordinary least squares (OLS) estimates in the linear regression model. In this paper new biased estimator (Liu estimator), almost unbiased (improved) Liu estimator and their residuals will be analyzed and compared with OLS residuals in terms of mean-squared error.  相似文献   

13.
The problem of multicollinearity and outliers in the data set produce undesirable effects on the ordinary least squares estimator. Therefore, robust two parameter ridge estimation based on M-estimator (ME) is introduced to deal with multicollinearity and outliers in the y-direction. The proposed estimator outperforms ME, two parameter ridge estimator and robust ridge M-estimator according to mean square error criterion. Moreover, a numerical example and a Monte Carlo simulation experiment are presented.  相似文献   

14.
In the presence of multicollinearity, the rk class estimator is proposed as an alternative to the ordinary least squares (OLS) estimator which is a general estimator including the ordinary ridge regression (ORR), the principal components regression (PCR) and the OLS estimators. Comparison of competing estimators of a parameter in the sense of mean square error (MSE) criterion is of central interest. An alternative criterion to the MSE criterion is the Pitman’s (1937) closeness (PC) criterion. In this paper, we compare the rk class estimator to the OLS estimator in terms of PC criterion so that we can get the comparison of the ORR estimator to the OLS estimator under the PC criterion which was done by Mason et al. (1990) and also the comparison of the PCR estimator to the OLS estimator by means of the PC criterion which was done by Lin and Wei (2002).  相似文献   

15.
In this article, we aim to study the linearized ridge regression (LRR) estimator in a linear regression model motivated by the work of Liu (1993). The LRR estimator and the two types of generalized Liu estimators are investigated under the PRESS criterion. The method of obtaining the optimal generalized ridge regression (GRR) estimator is derived from the optimal LRR estimator. We apply the Hald data as a numerical example and then make a simulation study to show the main results. It is concluded that the idea of transforming the GRR estimator as a complicated function of the biasing parameters to a linearized version should be paid more attention in the future.  相似文献   

16.
In this article, a generalized restricted difference-based ridge estimator is defined for the vector parameter in a partial linear model when the errors are dependent. It is suspected that some additional linear constraints may hold on to the whole parameter space. The estimator is a generalization of the well-known restricted least-squares estimator and is confined to the (affine) subspace which is generated by the restrictions. The risk functions of the proposed estimators are derived under balanced loss function. Finally, the performance of the new estimators is evaluated by a simulated data set.  相似文献   

17.
This article primarily aims to put forward the linearized restricted ridge regression (LRRR) estimator in linear regression models. Two types of LRRR estimators are investigated under the PRESS criterion and the optimal LRRR estimators and the optimal restricted generalized ridge regression estimator are obtained. We apply the results to the Hald data and finally make a simulation study by using the method of McDonald and Galarneau.  相似文献   

18.
It is well-known in the literature on multicollinearity that one of the major consequences of multicollinearity on the ordinary least squares estimator is that the estimator produces large sampling variances, which in turn might inappropriately lead to exclusion of otherwise significant coefficients from the model. To circumvent this problem, two accepted estimation procedures which are often suggested are the restricted least squares method and the ridge regression method. While the former leads to a reduction in the sampling variance of the estimator, the later ensures a smaller mean square error value for the estimator. In this paper we have proposed a new estimator which is based on a criterion that combines the ideas underlying these two estimators. The standard properties of this new estimator have been studied in the paper. It has also been shown that this estimator is superior to both the restricted least squares as well as the ordinary ridge regression estimators by the criterion of mean sauare error of the estimator of the regression coefficients when the restrictions are indeed correct. The conditions for superiority of this estimator over the other two have also been derived for the situation when the restrictions are not correct.  相似文献   

19.
Estimations of partial coefficients in a general regression models involve some complicated operations of matrices and their generalized inverses. In this note, we use the matrix rank method to derive necessary and sufficient conditions for the ordinary least-squares estimator and the best linear unbiased estimator of partial coefficients in a general linear regression model to equal.  相似文献   

20.
Necessary and sufficient conditions for a linear estimator to dominate another linear estimator of a location parameter under the Pitman's criterion of comparison are discussed. Consequently it is demonstrated that a linear biased estimator can not dominate a linear unbiased estimator under Pitman's criterion and that the sample mean is the Closest Linear Unbiased Estimator (CLUE). It is also shown that the ridge regression estimator with a known biasing constant can not dominate the ordinary least squares estimator. If an estimator δdominates an estimator δin the average loss sense then sufficient conditions are obtained under which δis also preferred over δunder Pitman's criterion. Further we obtain sufficient conditions under which preference under the Pitman's criterion will lead to preference under the mean squared error sense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号