首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
The quadratic discriminant function (QDF) with known parameters has been represented in terms of a weighted sum of independent noncentral chi-square variables. To approximate the density function of the QDF as m-dimensional exponential family, its moments in each order have been calculated. This is done using the recursive formula for the moments via the Stein's identity in the exponential family. We validate the performance of our method using simulation study and compare with other methods in the literature based on the real data. The finding results reveal better estimation of misclassification probabilities, and less computation time with our method.  相似文献   

2.
The location linear discriminant function is used in a two-population classification problem when the available data are generated from both binary and continuous random variables. Asymptotic distribution of the studentized location linear discriminant function is derived directly without the inversion of the corresponding characteristic function. The resulting plug-in estimate of the overall error of misclassification consists of the estimate based on the limiting distribution of the discriminant plus a correction term up to the second order. By comparison, our estimate avoids exact knowledge of the Mahalanobis distances which is necessary when the expansions of Vlachonikolis (1985) are used in the case of an arbitrary cut-off point. An example is re-examined and analysed in the present context.  相似文献   

3.
The purpose of the present investigation 1s to observe the effect of departure from normahty of the prior distribution of regresslon parameters on the Bayman analysis of a h e a r regresslon model Assuming an Edgeworth serles prior distribution for the regresslon coefficients and gamma prior for the disturbances precision, the expressions for the posterlor distribution, posterlor mean and Bayes risk under a quadratic loss function are obtalned The results of a numerical evaluation are also analyzed  相似文献   

4.
Fisher's Linear Discriminant Function Can be used to classify an individual who has sampled from one of two multivariate normal Populations. In the following, this function is viewed as the other given his data vector it is assumed that the Population means and common covariance matrix are unknown. The vector of discriminant coeffients β(p×1) is the gradient of posterior log-odds and certain of its lineqar functions are directional derivatives which have a practical meaning. Accordingly, we treat the problems of estimating several linear functions of β The usual estimatoes of these functions are scaled versions of the unbiased estmators. In this Paper, these estimators are domainated by explicit alterenatives under a quadratic loss function. we reduce the problem of estimating β to that of estimating the inverse convariance matrix.  相似文献   

5.
This article considers the problem of statistical classification involving multivariate normal populations and compares the performance of the linear discriminant function (LDF) and the Euclidean distance function (EDF), Although the LDF is quite popular and robust, it has been established (Marco, Young and Turner, 1989) that under certain non-trivial conditions, the EDF is "equivalent" to the LDF, in terms of equal probabilities of misclassifica-tion (error rates). Thus it follows that under those conditions the sample EDF could perform better than the sample LDF, since the sample EDF involves estimation of fewer parameters. Sindation results, also from the above paper; seemed to support this hypothesis. This article compares the two sample discriminant functions through asymptotic expansions of error rates, and identifies situations when the sample EDF should perform better than the sample LDF. Results from simulation experiments are also reported and discussed.  相似文献   

6.
We deal with the problem of classifying a new observation vector into one of two known multivariate normal distributions when the dimension p and training sample size N   are both large with p<Np<N. Modified linear discriminant analysis (MLDA) was suggested by Xu et al. [10]. Error rate of MLDA is smaller than the one of LDA. However, if p and N   are moderately large, error rate of MLDA is close to the one of LDA. These results are conditional ones, so we should investigate whether they hold unconditionally. In this paper, we give two types of asymptotic approximations of expected probability of misclassification (EPMC) for MLDA as n→∞n with p=O(nδ)p=O(nδ), 0<δ<10<δ<1. The one of two is the same as the asymptotic approximation of LDA, and the other is corrected version of the approximation. Simulation reveals that the modified version of approximation has good accuracy for the case in which p and N are moderately large.  相似文献   

7.
Distributional properties are given for a statistic T*, which has previously been reported to have power properties as a test of normality as attractive as those of the sample kurtosis or perhaps slightly more attractive. Asymptotic results, the mean and variance under normality, the range of variation, and approximation of critical values for testing normality are obtained  相似文献   

8.
The generalized gamma distribution is a flexible and attractive distribution because it incorporates several well-known distributions, i.e., gamma, Weibull, Rayleigh, and Maxwell. This article derives saddlepoint density and distribution functions for the ratio of two linear functions of generalized gamma variables and the product of n independent generalized gamma variables. Simulation studies are used to evaluate the accuracy of the saddlepoint approximations. The saddlepoint approximations are fast, easy, and very accurate.  相似文献   

9.
The problem of updating a discriminant function on the basis of data of unknown origin is studied. There are observations of known origin from each of the underlying populations, and subsequently there is available a limited number of unclassified observations assumed to have been drawn from a mixture of the underlying populations. A sample discriminant function can be formed initially from the classified data. The question of whether the subsequent updating of this discriminant function on the basis of the unclassified data produces a reduction in the error rate of sufficient magnitude to warrant the computational effort is considered by carrying out a series of Monte Carlo experiments. The simulation results are contrasted with available asymptotic results.  相似文献   

10.
We consider simultaneous confidence regions for some hypotheses on ratios of the discriminant coefficients of the linear discriminant function when the population means and common covariance matrix are unknown. This problem, involving hypotheses on ratios, yields the so-called ‘pseudo’ confidence regions valid conditionally in subsets of the parameter space. We obtain the explicit formulae of the regions and give further discussion on the validity of these regions. Illustrations of the pseudo confidence regions are given.  相似文献   

11.
Using mean absolute deviation, we compare the efficay of two new parametric conditional error rate estimators with six others, four of which are well known.The performance of both new estimators is found to be superior to the six competing estimators examined in this paper, especially when the ratio of the training sample size to the feature dimensionality is small.  相似文献   

12.
In this paper, we derive the exact distribution and density functions of the Stein-type estimator for the normal variance. It is shown by numerical evaluation that the density function of the Stein-type estimator is unimodal and concentrates around the mode more than that of the usual estimator.  相似文献   

13.
Saddlepoint approximations for the densities and the distribution functions of the ratio of two linear functions of gamma random variables and the product of gamma random variables are derived. Ratios of linear functions with positive and negative weights and non identical gamma variables are considered. The saddlepoint approximations are very accurate in the tails as in the center of the distribution. Extensive simulation studies are used to evaluate the accuracy of the proposed methods.  相似文献   

14.
Abstract

This paper focuses on the inference of suitable generally non linear functions in stochastic volatility models. In this context, in order to estimate the variance of the proposed estimators, a moving block bootstrap (MBB) approach is suggested and discussed. Under mild assumptions, we show that the MBB procedure is weakly consistent. Moreover, a methodology to choose the optimal length block in the MBB is proposed. Some examples and simulations on the model are also made to show the performance of the proposed procedure.  相似文献   

15.
This paper is concerned with asymptotic distributions of functions of a sample covariance matrix under the elliptical model. Simple but useful formulae for calculating asymptotic variances and covariances of the functions are derived. Also, an asymptotic expansion formula for the expectation of a function of a sample covariance matrix is derived; it is given up to the second-order term with respect to the inverse of the sample size. Two examples are given: one of calculating the asymptotic variances and covariances of the stepdown multiple correlation coefficients, and the other of obtaining the asymptotic expansion formula for the moments of sample generalized variance.  相似文献   

16.
This paper is concerned with the problem of deriving Bayesian prediction bounds for the Burr distribution when the sample size is a random variable. Prediction bounds for both the future observations (the case of two-sample prediction) and the remaining observations in the same sample (the case of one-sample prediction) will be derived. The analysis will depend mainly on assuming that the size of the sample is a random variable having the Poisson distribution. Finally, numerical examples are given to illustrate the results.  相似文献   

17.
This paper considers the problem where the linear discriminant rule is formed from training data that are only partially classified with respect to the two groups of origin. A further complication is that the data of unknown origin do not constitute an observed random sample from a mixture of the two under- lying groups. Under the assumption of a homoscedastic normal model, the overall error rate of the sample linear discriminant rule formed by maximum likelihood from the partially classified training data is derived up to and including terms of the first order in the case of univariate feature data. This first- order expansion of the sample rule so formed is used to define its asymptotic efficiency relative to the rule formed from a completely classified random training set and also to the rule formed from a completely unclassified random set.  相似文献   

18.
In this paper, the Bayes estimators for the parameter, the reliability function, and failure rate function of the Rayleigh distribution are obtained when based on complete or type II censored samples. Some types of the linex loss function are used. Comparieons in terms of risks of those under linex loss and squared error loss function with Bayes estimators relative to squared error loss function are made, Numerical example and simulation example are included.  相似文献   

19.
In this paper, we develop a generalized version of the two-piece skew normal distribution of Kim [On a class of two-piece skew-normal distributions, Statistics 39(6) (2005), pp. 537–553] and derive explicit expressions for its distribution function and characteristic function and discuss some of its important properties. Further estimation of the parameters of the generalized distribution is carried out.  相似文献   

20.
The sample linear discriminant function (LDF) is known to perform poorly when the number of features p is large relative to the size of the training samples, A simple and rarely applied alternative to the sample LDF is the sample Euclidean distance classifier (EDC). Raudys and Pikelis (1980) have compared the sample LDF with three other discriminant functions, including thesample EDC, when classifying individuals from two spherical normal populations. They have concluded that the sample EDC outperforms the sample LDF when p is large relative to the training sample size. This paper derives conditions for which the two classifiers are equivalent when all parameters are known and employs a Monte Carlo simulation to compare the sample EDC with the sample LDF no only for the spherical normal case but also for several nonspherical parameter configurations. Fo many practical situations, the sample EDC performs as well as or superior to the sample LDF, even for nonspherical covariance configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号