共查询到20条相似文献,搜索用时 0 毫秒
1.
In a multi-sample simple regression model, generally, homogeneity of the regression slopes leads to improved estimation of the intercepts. Analogous to the preliminary test estimators, (smooth) shrinkage least squares estimators of Intercepts based on the James-Stein rule on regression slopes are considered. Relative pictures on the (asymptotic) risk of the classical, preliminary test and the shrinkage least squares estimators are also presented. None of the preliminary test and shrinkage least squares estimators may dominate over the other, though each of them fares well relative to the other estimators. 相似文献
2.
Muhammad Kashif Ali Shah Supranee Lisawadi S. Ejaz Ahmed 《Journal of Statistical Computation and Simulation》2017,87(8):1577-1592
In this article, we have developed asymptotic theory for the simultaneous estimation of the k means of arbitrary populations under the common mean hypothesis and further assuming that corresponding population variances are unknown and unequal. The unrestricted estimator, the Graybill-Deal-type restricted estimator, the preliminary test, and the Stein-type shrinkage estimators are suggested. A large sample test statistic is also proposed as a pretest for testing the common mean hypothesis. Under the sequence of local alternatives and squared error loss, we have compared the asymptotic properties of the estimators by means of asymptotic distributional quadratic bias and risk. Comprehensive Monte-Carlo simulation experiments were conducted to study the relative risk performance of the estimators with reference to the unrestricted estimator in finite samples. Two real-data examples are also furnished to illustrate the application of the suggested estimation strategies. 相似文献
3.
For a general class of continuous ( and marginally symmetric ) inultivariate distributions, based on suitable M-statistics ( involving bounded but possibly discontinuous score generating functions), shrinkage estimators of location are considered. These estimators are based on the James-Stein type rule and incorporates the idea of preliminary test estimation too. The main emphasis is laid on the study of asymptotic tdistributional ) risk properties of these est-innators, and asymptotic tin-) adraissibility results are also studied under fairly general regularity conditions. 相似文献
4.
S.E. Ahmed 《统计学通讯:理论与方法》2013,42(10):2391-2421
Shrinkage pretest nonparametric estimation of the location parameter vector in a multivariate regression model is considered when nonsample information (NSI) about the regression parameters is available. By using the quadratic risk criterion, the dominance of the pretest estimators over the usual estimators has been investigated. We demonstrate analytically and computationally that the proposed improved pretest estimator establishes a wider dominance range for the parameter under consideration than that of the usual pretest estimator in which it is superior over the unrestricted estimator. 相似文献
5.
In this paper we address the problem of estimating a vector of regression parameters in the Weibull censored regression model. Our main objective is to provide natural adaptive estimators that significantly improve upon the classical procedures in the situation where some of the predictors may or may not be associated with the response. In the context of two competing Weibull censored regression models (full model and candidate submodel), we consider an adaptive shrinkage estimation strategy that shrinks the full model maximum likelihood estimate in the direction of the submodel maximum likelihood estimate. We develop the properties of these estimators using the notion of asymptotic distributional risk. The shrinkage estimators are shown to have higher efficiency than the classical estimators for a wide class of models. Further, we consider a LASSO type estimation strategy and compare the relative performance with the shrinkage estimators. Monte Carlo simulations reveal that when the true model is close to the candidate submodel, the shrinkage strategy performs better than the LASSO strategy when, and only when, there are many inactive predictors in the model. Shrinkage and LASSO strategies are applied to a real data set from Veteran's administration (VA) lung cancer study to illustrate the usefulness of the procedures in practice. 相似文献
6.
《Journal of nonparametric statistics》2012,24(1-3):51-78
Nonparametric estimation of the location parameter vector is considered when uncertain prior information (UPI) about the regression parameters is available. The asymptotic properties of shrinkage and preliminary test estimators using quadratic loss function are appraised. It is demonstrated that the positive-rule estimator asymptotically dominates the usual Stein-type estimator. However, both shrinkage estimators are superior to the usual estimators. The relative dominance picture of the estimators is presented analytically as well as graphically. 相似文献
7.
《Journal of Statistical Computation and Simulation》2012,82(17):3495-3511
ABSTRACTThis article addresses the problem of parameter estimation of the logistic regression model under subspace information via linear shrinkage, pretest, and shrinkage pretest estimators along with the traditional unrestricted maximum likelihood estimator and restricted estimator. We developed an asymptotic theory for the linear shrinkage and pretest estimators and compared their relative performance using the notion of asymptotic distributional bias and asymptotic quadratic risk. The analytical results demonstrated that the proposed estimation strategies outperformed the classical estimation strategies in a meaningful parameter space. Detailed Monte-Carlo simulation studies were conducted for different combinations and the performance of each estimation method was evaluated in terms of simulated relative efficiency. The results of the simulation study were in strong agreement with the asymptotic analytical findings. Two real-data examples are also given to appraise the performance of the estimators. 相似文献
8.
《Journal of Statistical Computation and Simulation》2012,82(16):3335-3351
In this paper, we consider the shrinkage and penalty estimation procedures in the linear regression model with autoregressive errors of order p when it is conjectured that some of the regression parameters are inactive. We develop the statistical properties of the shrinkage estimation method including asymptotic distributional biases and risks. We show that the shrinkage estimators have a significantly higher relative efficiency than the classical estimator. Furthermore, we consider the two penalty estimators: least absolute shrinkage and selection operator (LASSO) and adaptive LASSO estimators, and numerically compare their relative performance with that of the shrinkage estimators. A Monte Carlo simulation experiment is conducted for different combinations of inactive predictors and the performance of each estimator is evaluated in terms of the simulated mean-squared error. This study shows that the shrinkage estimators are comparable to the penalty estimators when the number of inactive predictors in the model is relatively large. The shrinkage and penalty methods are applied to a real data set to illustrate the usefulness of the procedures in practice. 相似文献
9.
《Journal of Statistical Computation and Simulation》2012,82(7):1412-1426
In the multinomial regression model, we consider the methodology for simultaneous model selection and parameter estimation by using the shrinkage and LASSO (least absolute shrinkage and selection operation) [R. Tibshirani, Regression shrinkage and selection via the LASSO, J. R. Statist. Soc. Ser. B 58 (1996), pp. 267–288] strategies. The shrinkage estimators (SEs) provide significant improvement over their classical counterparts in the case where some of the predictors may or may not be active for the response of interest. The asymptotic properties of the SEs are developed using the notion of asymptotic distributional risk. We then compare the relative performance of the LASSO estimator with two SEs in terms of simulated relative efficiency. A simulation study shows that the shrinkage and LASSO estimators dominate the full model estimator. Further, both SEs perform better than the LASSO estimators when there are many inactive predictors in the model. A real-life data set is used to illustrate the suggested shrinkage and LASSO estimators. 相似文献
10.
We introduce in this paper, the shrinkage estimation method in the lognormal regression model for censored data involving many predictors, some of which may not have any influence on the response of interest. We develop the asymptotic properties of the shrinkage estimators (SEs) using the notion of asymptotic distributional biases and risks. We show that if the shrinkage dimension exceeds two, the asymptotic risk of the SEs is strictly less than the corresponding classical estimators. Furthermore, we study the penalty (LASSO and adaptive LASSO) estimation methods and compare their relative performance with the SEs. A simulation study for various combinations of the inactive predictors and censoring percentages shows that the SEs perform better than the penalty estimators in certain parts of the parameter space, especially when there are many inactive predictors in the model. It also shows that the shrinkage and penalty estimators outperform the classical estimators. A real-life data example using Worcester heart attack study is used to illustrate the performance of the suggested estimators. 相似文献
11.
The estimation of the reliability function of the Weibull lifetime model is considered in the presence of uncertain prior information (not in the form of prior distribution) on the parameter of interest. This information is assumed to be available in some sort of a realistic conjecture. In this article, we focus on how to combine sample and non-sample information together in order to achieve improved estimation performance. Three classes of point estimatiors, namely, the unrestricted estimator, the shrinkage estimator and shrinkage preliminary test estimator (SPTE) are proposed. Their asymptotic biases and mean-squared errors are derived and compared. The relative dominance picture of the estimators is presented. Interestingly, the proposed SPTE dominates the unrestricted estimator in a range that is wider than that of the usual preliminary test estimator. A small-scale simulation experiment is used to examine the small sample properties of the proposed estimators. Our simulation investigations have provided strong evidence that corroborates with asymptotic theory. The suggested estimation methods are applied to a published data set to illustrate the performance of the estimators in a real-life situation. 相似文献
12.
Ahmed S. E 《统计学通讯:理论与方法》2013,42(5-6):1273-1291
The improved large sample estimation theory for the probabilities of multi¬nomial distribution is developed under uncertain prior information (UPI) that the true proportion is a known quantity. Several estimators based on pretest and the Stein-type shrinkage rules are constructed. The expressions for the bias and risk of the proposed estimators are derived and compared with the maximum likelihood (ml) estimators. It is demonstrated that the shrinkage estimators are superior to the ml estimators. It is also shown that none of the preliminary test and shrinkage estimators dominate each other, though they perform y/ell relative to the ml estimators. The relative dominance picture of the estimators is presented. A simulation study is carried out to assess the performance of the estimators numerically in small samples. 相似文献
13.
Xinfeng Chang 《统计学通讯:理论与方法》2018,47(3):583-600
In this paper, the preliminary test approach to the estimation of the linear regression model with student's t errors is considered. The preliminary test almost unbiased two-parameter estimator is proposed, when it is suspected that the regression parameter may be restricted to a constraint. The quadratic biases and quadratic risks of the proposed estimators are derived and compared under both null and alternative hypotheses. The conditions of superiority of the proposed estimators for departure parameter and biasing parameters k and d are derived, respectively. Furthermore, a real data example and a Monte Carlo simulation study are provided to illustrate some of the theoretical results. 相似文献
14.
The general procedure of two stage shrinkage testimation formulated in Adlce and Gokhale [Commun. Statist.- Theory Meth. 18, 633-627 (1989)] k further generalized and extended to the multiparameter case. Local optimal-ity result of that paper, in the restricted set up of univariate location families and scalar families, is generalized without any restriction on the parametric family. The local unbiasedness result of that paper is also generalized and in addition local risk- unbiasedness is considered. The optimality and risk-unbiasedness results are proved for the usual matrix loss and their validity for an arbitrary quadratic loss deduced as corollaries. 相似文献
15.
Akio Namba 《Journal of Statistical Computation and Simulation》2018,88(11):2034-2047
In this paper, assuming that there exist omitted explanatory variables in the specified model, we derive the exact formula for the mean squared error (MSE) of a general family of shrinkage estimators for each individual regression coefficient. It is shown analytically that when our concern is to estimate each individual regression coefficient, the positive-part shrinkage estimators have smaller MSE than the original shrinkage estimators under some conditions even when the relevant regressors are omitted. Also, by numerical evaluations, we showed the effects of our theorem for several specific cases. It is shown that the positive-part shrinkage estimators have smaller MSE than the original shrinkage estimators for wide region of parameter space even when there exist omitted variables in the specified model. 相似文献
16.
In this paper, we consider the estimation problem of the weighted least absolute deviation (WLAD) regression parameter vector when there are some outliers or heavy-tailed errors in the response and the leverage points in the predictors. We propose the pretest and James–Stein shrinkage WLAD estimators when some of the parameters may be subject to certain restrictions. We derive the asymptotic risk of the pretest and shrinkage WLAD estimators and show that if the shrinkage dimension exceeds two, the asymptotic risk of the shrinkage WLAD estimator is strictly less than the unrestricted WLAD estimator. On the other hand, the risk of the pretest WLAD estimator depends on the validity of the restrictions on the parameters. Furthermore, we study the WLAD absolute shrinkage and selection operator (WLAD-LASSO) and compare its relative performance with the pretest and shrinkage WLAD estimators. A simulation study is conducted to evaluate the performance of the proposed estimators relative to that of the unrestricted WLAD estimator. A real-life data example using body fat study is used to illustrate the performance of the suggested estimators. 相似文献
17.
Paul Chiou 《统计学通讯:理论与方法》2013,42(5):1483-1494
In this paper we propose two empirical Bayes shrinkage estimators for the reliability of the exponential distribution and study their properties. Under the uniform prior distribution and the inverted gamma prior distribution these estimators are developed and compared with a preliminary test estimator and with a shrinkage testimator in terms of mean squared error. The proposed empirical Bayes shrinkage estimator under the inverted gamma prior distribution is shown to be preferable to the preliminary test estimator and the shrinkage testimator when the prior value of mean life is clsoe to the true mean life. 相似文献
18.
Multicollinearity and model misspecification are frequently encountered problems in practice that produce undesirable effects on classical ordinary least squares (OLS) regression estimator. The ridge regression estimator is an important tool to reduce the effects of multicollinearity, but it is still sensitive to a model misspecification of error distribution. Although rank-based statistical inference has desirable robustness properties compared to the OLS procedures, it can be unstable in the presence of multicollinearity. This paper introduces a rank regression estimator for regression parameters and develops tests for general linear hypotheses in a multiple linear regression model. The proposed estimator and the tests have desirable robustness features against the multicollinearity and model misspecification of error distribution. Asymptotic behaviours of the proposed estimator and the test statistics are investigated. Real and simulated data sets are used to demonstrate the feasibility and the performance of the estimator and the tests. 相似文献
19.
Helge Blaker 《Revue canadienne de statistique》1999,27(1):207-220
We consider the problem of using shrinkage estimators that shrink towards subspaces in linear regression, in particular subspaces spanned by principal components. This is especially important when multicollinearity is present and the number of predictors is not small compared to the sample size. New theoretical results about Stein estimation are used to get estimators with lower theoretical risk than standard Stein estimators used by Oman (1991). Application of the techniques to real data is largely successful. 相似文献
20.