首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we propose a generalized class of estimators for finite population mean using two auxiliary variables in two-phase stratified sampling for non response. We identify 17 estimators as special cases of the proposed class of estimators. Expressions for the bias and mean squared error (MSE) of estimators are obtained up to first order of approximation. A data set is used for efficiency comparisons.  相似文献   

2.
A regression model is considered in which the response variable has a type 1 extreme-value distribution for smallest values. Bias approximations for the maximum likelihood estimators are pivm and a bias reduction estimator for the scale parameter is proposed. The small sample moment properties of the maximum likelihood estimators are compared with the properties of the ordinary least squares estimators and the best linear unbiased estimators based on order statistics for grouped data.  相似文献   

3.
The authors study the estimation of domain totals and means under survey‐weighted regression imputation for missing items. They use two different approaches to inference: (i) design‐based with uniform response within classes; (ii) model‐assisted with ignorable response and an imputation model. They show that the imputed domain estimators are biased under (i) but approximately unbiased under (ii). They obtain a bias‐adjusted estimator that is approximately unbiased under (i) or (ii). They also derive linearization variance estimators. They report the results of a simulation study on the bias ratio and efficiency of alternative estimators, including a complete case estimator that requires the knowledge of response indicators.  相似文献   

4.
Inference for a generalized linear model is generally performed using asymptotic approximations for the bias and the covariance matrix of the parameter estimators. For small experiments, these approximations can be poor and result in estimators with considerable bias. We investigate the properties of designs for small experiments when the response is described by a simple logistic regression model and parameter estimators are to be obtained by the maximum penalized likelihood method of Firth [Firth, D., 1993, Bias reduction of maximum likelihood estimates. Biometrika, 80, 27–38]. Although this method achieves a reduction in bias, we illustrate that the remaining bias may be substantial for small experiments, and propose minimization of the integrated mean square error, based on Firth's estimates, as a suitable criterion for design selection. This approach is used to find locally optimal designs for two support points.  相似文献   

5.
Non-iterative, distribution-free, and unbiased estimators of variance components by least squares method are derived for multivariate linear mixed model. A general inter-cluster variance matrix, a same-member only general inter-response variance matrix, and an uncorrelated intra-cluster error structure for each response are assumed. Projection method is suggested when unbiased estimators of variance components are not nonnegative definite matrices. A simulation study is conducted to investigate the properties of the proposed estimators in terms of bias and mean square error with comparison to the Gaussian (restricted) maximum likelihood estimators. The proposed estimators are illustrated by an application of gene expression familial study.  相似文献   

6.
Sousa et al. and Gupta et al. suggested ratio and regression-type estimators of the mean of a sensitive variable using nonsensitive auxiliary variable. This article proposes exponential-type estimators using one and two auxiliary variables to improve the efficiency of mean estimator based on a randomized response technique. The expressions for the mean squared errors (MSEs) and bias, up to first-order approximation, have been obtained. It is shown that the proposed exponential-type estimators are more efficient than the existing estimators. The gain in efficiency over the existing estimators has also been shown with a simulation study and by using real data.  相似文献   

7.
Randomized response is an interview technique designed to eliminate response bias when sensitive questions are asked. In this paper, we present a logistic regression model on randomized response data when the covariates on some subjects are missing at random. In particular, we propose Horvitz and Thompson (1952)-type weighted estimators by using different estimates of the selection probabilities. We present large sample theory for the proposed estimators and show that they are more efficient than the estimator using the true selection probabilities. Simulation results support theoretical analysis. We also illustrate the approach using data from a survey of cable TV.  相似文献   

8.
Abstract

This article addresses the problem of estimating population distribution function for simple random sampling in the presence of non response and measurement error together. We suggest a general class of estimators for estimating the cumulative distribution function using the auxiliary information. The expressions for the bias and mean squared error are derived up to the first order of approximation. The performance of the proposed class of estimators is compared with considered estimators both theoretically and numerically. A real data set is used to support the theoretical findings.  相似文献   

9.
Ratio estimators of effect are ordinarily obtained by exponentiating maximum-likelihood estimators (MLEs) of log-linear or logistic regression coefficients. These estimators can display marked positive finite-sample bias, however. We propose a simple correction that removes a substantial portion of the bias due to exponentiation. By combining this correction with bias correction on the log scale, we demonstrate that one achieves complete removal of second-order bias in odds ratio estimators in important special cases. We show how this approach extends to address bias in odds or risk ratio estimators in many common regression settings. We also propose a class of estimators that provide reduced mean bias and squared error, while allowing the investigator to control the risk of underestimating the true ratio parameter. We present simulation studies in which the proposed estimators are shown to exhibit considerable reduction in bias, variance, and mean squared error compared to MLEs. Bootstrapping provides further improvement, including narrower confidence intervals without sacrificing coverage.  相似文献   

10.
Log-normal linear models are widely used in applications, and many times it is of interest to predict the response variable or to estimate the mean of the response variable at the original scale for a new set of covariate values. In this paper we consider the problem of efficient estimation of the conditional mean of the response variable at the original scale for log-normal linear models. Several existing estimators are reviewed first, including the maximum likelihood (ML) estimator, the restricted ML (REML) estimator, the uniformly minimum variance unbiased (UMVU) estimator, and a bias-corrected REML estimator. We then propose two estimators that minimize the asymptotic mean squared error and the asymptotic bias, respectively. A parametric bootstrap procedure is also described to obtain confidence intervals for the proposed estimators. Both the new estimators and the bootstrap procedure are very easy to implement. Comparisons of the estimators using simulation studies suggest that our estimators perform better than the existing ones, and the bootstrap procedure yields confidence intervals with good coverage properties. A real application of estimating the mean sediment discharge is used to illustrate the methodology.  相似文献   

11.
Missing data analysis requires assumptions about an outcome model or a response probability model to adjust for potential bias due to nonresponse. Doubly robust (DR) estimators are consistent if at least one of the models is correctly specified. Multiply robust (MR) estimators extend DR estimators by allowing for multiple models for both the outcome and/or response probability models and are consistent if at least one of the multiple models is correctly specified. We propose a robust quasi-randomization-based model approach to bring more protection against model misspecification than the existing DR and MR estimators, where any multiple semiparametric, nonparametric or machine learning models can be used for the outcome variable. The proposed estimator achieves unbiasedness by using a subsampling Rao–Blackwell method, given cell-homogenous response, regardless of any working models for the outcome. An unbiased variance estimation formula is proposed, which does not use any replicate jackknife or bootstrap methods. A simulation study shows that our proposed method outperforms the existing multiply robust estimators.  相似文献   

12.
Abstract

It is known that due to the existence of the nonparametric component, the usual estimators for the parametric component or its function in partially linear regression models are biased. Sometimes this bias is severe. To reduce the bias, we propose two jackknife estimators and compare them with the naive estimator. All three estimators are shown to be asymptotically equivalent and asymptotically normally distributed under some regularity conditions. However, through simulation we demonstrate that the jackknife estimators perform better than the naive estimator in terms of bias when the sample size is small to moderate. To make our results more useful, we also construct consistent estimators of the asymptotic variance, which are robust against heterogeneity of the error variances.  相似文献   

13.
韩本三等 《统计研究》2015,32(1):102-109
本文提出了带异质线性趋势的动态二元面板模型的极大似然偏误纠正估计量和近似条件Logit估计量。我们给出了通常极大似然估计量偏误的解析形式,并提供了相应的估计方法。小样本实验表明近似条件似然函数可以很好的消除异质性参数的影响,而偏误纠正估计量可以显著的修正极大似然估计量的偏误。最后我们将本文提出的方法应用到现金红利支付模型。  相似文献   

14.
In this paper, we consider a mixture of two uniform distributions and derive L-moment estimators of its parameters. Three possible ways of mixing two uniforms, namely with neither overlap nor gap, with overlap, and with gap, are studied. The performance of these L-moment estimators in terms of bias and efficiency is compared to that obtained by means of the conventional method of moments (MM), modified maximum likelihood (MML) method and the usual maximum likelihood (ML) method. These intensive simulations reveal that MML estimators are the best in most of the cases, and the L-moment estimators are less subject to bias in estimation for some mixtures and more efficient in most of the cases than the conventional MM estimators. The L-moment estimators are, in some cases, more efficient than the ML and MML estimators.  相似文献   

15.
A modification of the Greenwood variance estimator is defined and shown to be free of bias whenever its constitu­ent interval estimators are conditionally unbiased, given the sample size at the start of the interval. Using the modified estimator as a standard of comparison, the original Greenwood estimator is seen to have an intrinsic positive bias.Under­estimation of variances through the use of Greenwood's formula must be due to bias in the constituent interval estimators and/or, with fixed interval bounds, due to disregarding the random character of the total number of life table intervals to exhaustion of ttje sample. Some easy to prove properties of the modified and the original Greenwood estimators are stated that apply in the absence of censoring. A suggest­ion is made for reducing the bias of the interval variance estimators.  相似文献   

16.
We study the bias that arises from using censored regressors in estimation of linear models. We present results on bias in ordinary least aquares (OLS) regression estimators with exogenous censoring and in instrumental variable (IV) estimators when the censored regressor is endogenous. Bound censoring such as top-coding results in expansion bias, or effects that are too large. Independent censoring results in bias that varies with the estimation method—attenuation bias in OLS estimators and expansion bias in IV estimators. Severe biases can result when there are several regressors and when a 0–1 variable is used in place of a continuous regressor.  相似文献   

17.
Abstract

This study concerns semiparametric approaches to estimate discrete multivariate count regression functions. The semiparametric approaches investigated consist of combining discrete multivariate nonparametric kernel and parametric estimations such that (i) a prior knowledge of the conditional distribution of model response may be incorporated and (ii) the bias of the traditional nonparametric kernel regression estimator of Nadaraya-Watson may be reduced. We are precisely interested in combination of the two estimations approaches with some asymptotic properties of the resulting estimators. Asymptotic normality results were showed for nonparametric correction terms of parametric start function of the estimators. The performance of discrete semiparametric multivariate kernel estimators studied is illustrated using simulations and real count data. In addition, diagnostic checks are performed to test the adequacy of the parametric start model to the true discrete regression model. Finally, using discrete semiparametric multivariate kernel estimators provides a bias reduction when the parametric multivariate regression model used as start regression function belongs to a neighborhood of the true regression model.  相似文献   

18.
Whenever there is auxiliary information available in any form, the researchers want to utilize it in the method of estimation to obtain the most efficient estimator. When there exists enough amount of correlation between the study and the auxiliary variables, and parallel to these associations, the ranks of the auxiliary variables are also correlated with the study variable, which can be used a valuable device for enhancing the precision of an estimator accordingly. This article addresses the problem of estimating the finite population mean that utilizes the complementary information in the presence of (i) the auxiliary variable and (ii) the ranks of the auxiliary variable for non response. We suggest an improved estimator for estimating the finite population mean using the auxiliary information in the presence of non response. Expressions for bias and mean squared error of considered estimators are derived up to the first order of approximation. The performance of estimators is compared theoretically and numerically. A numerical study is carried out to evaluate the performances of estimators. It is observed that the proposed estimator is more efficient than the usual sample mean and the regression estimators, and some other families of ratio and exponential type of estimators.  相似文献   

19.
ABSTRACT

We derive analytic expressions for the biases, to O(n?1), of the maximum likelihood estimators of the parameters of the generalized Pareto distribution. Using these expressions to bias-correct the estimators in a selective manner is found to be extremely effective in terms of bias reduction, and can also result in a small reduction in relative mean squared error (MSE). In terms of remaining relative bias, the analytic bias-corrected estimators are somewhat less effective than their counterparts obtained by using a parametric bootstrap bias correction. However, the analytic correction out-performs the bootstrap correction in terms of remaining %MSE. It also performs credibly relative to other recently proposed estimators for this distribution. Taking into account the relative computational costs, this leads us to recommend the selective use of the analytic bias adjustment for most practical situations.  相似文献   

20.
For density and distribution functions supported on [0,1], Bernstein polynomial estimators are known to have optimal mean integrated squared error (MISE) properties under the usual smoothness conditions on the function to be estimated. These estimators are also known to be well-behaved in terms of bias: they have uniform bias over the entire unit interval. What is less known, however, is that some of these estimators do experience a boundary effect, but of a different nature than what is seen with the usual kernel estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号