共查询到20条相似文献,搜索用时 27 毫秒
1.
For the first time, we propose a five-parameter lifetime model called the McDonald Weibull distribution to extend the Weibull, exponentiated Weibull, beta Weibull and Kumaraswamy Weibull distributions, among several other models. We obtain explicit expressions for the ordinary moments, quantile and generating functions, mean deviations and moments of the order statistics. We use the method of maximum likelihood to fit the new distribution and determine the observed information matrix. We define the log-McDonald Weibull regression model for censored data. The potentiality of the new model is illustrated by means of two real data sets. 相似文献
2.
This article introduces a five-parameter lifetime model called the McDonald Gompertz (McG) distribution to extend the Gompertz, generalized Gompertz, generalized exponential, beta Gompertz, and Kumaraswamy Gompertz distributions among several other models. The hazard function of new distribution can be increasing, decreasing, upside-down bathtub, and bathtub shaped. We obtain several properties of the McG distribution including moments, entropies, quantile, and generating functions. We provide the density function of the order statistics and their moments. The parameter estimation is based on the usual maximum likelihood approach. We also provide the observed information matrix and discuss inferences issues. The flexibility and usefulness of the new distribution are illustrated by means of application to two real datasets. 相似文献
3.
《Journal of Statistical Computation and Simulation》2012,82(2):290-309
The generalized Rayleigh (GR) distribution [V.G. Vodǎ, Inferential procedures on a generalized Rayleigh variate, I, Appl. Math. 21 (1976), pp. 395–412; V.G. Vodǎ, Inferential procedures on a generalized Rayleigh variate, II, Appl. Math. 21 (1976), pp. 413–419] has been applied in several areas such as health, agriculture, biology and other sciences. For the first time, we propose the Kumaraswamy GR (KwGR) distribution for analysing lifetime data. The new density function can be expressed as a mixture of GR density functions. Explicit formulae are derived for some of its statistical quantities. The density function of the order statistics can be expressed as a mixture of GR density functions. We also propose a linear log-KwGR regression model for analysing data with real support to extend some known regression models. The estimation of parameters is approached by maximum likelihood. The importance of the new models is illustrated in two real data sets. 相似文献
4.
Gauss M. Cordeiro 《Statistics》2013,47(1):182-199
We propose a new three-parameter continuous model called the McDonald arcsine distribution, which is a very competitive model to the beta, beta type I and Kumaraswamy distributions for modelling rates and proportions. We provide a mathematical treatment of the new distribution including explicit expressions for the density function, moments, generating and quantile functions, mean deviations, two probability measures based on the Bonferroni and Lorenz curves, Shannon entropy, Rényi entropy and cumulative residual entropy. Maximum likelihood is used to estimate the model parameters and the expected information matrix is determined. An application of the proposed model to real data shows that it can give consistently a better fit than other important statistical models. 相似文献
5.
Morad Alizadeh S. M. T. K. MirMostafaee Maryam Samizadeh Edwin M. M. Ortega 《统计学通讯:模拟与计算》2019,48(6):1746-1767
In this paper we introduce a flexible extension of the Gumbel distribution called the odd log-logistic exponentiated Gumbel distribution. The new model was implemented in GAMLSS package of R software and a brief tutorial on how to use this package is presented throughout the paper. We provide a comprehensive treatment of its general mathematical properties. Further, we propose a new extended regression model considering four regression structures. We discuss estimation methods based on censored and uncensored data. Two simulation studies are presented and four real data sets are applied to illustrating the usefulness of the new model. 相似文献
6.
Gauss M. Cordeiro Thiago G. Ramires Edwin M. M. Ortega 《Journal of Statistical Computation and Simulation》2018,88(3):432-456
We introduce a new class of distributions called the Burr XII system of densities with two extra positive parameters. We provide a comprehensive treatment of some of its mathematical properties. We estimate the model parameters by maximum likelihood. We assess the performance of the maximum likelihood estimators in terms of biases and mean squared errors by means of a simulation study. We also introduce a new family of regression models based on this system of densities. The usefulness of the proposed models is illustrated by means of three real data sets. 相似文献
7.
Gauss M. Cordeiro Edwin M.M. Ortega 《Journal of Statistical Computation and Simulation》2013,83(6):1082-1114
In this paper, we study some mathematical properties of the beta Weibull (BW) distribution, which is a quite flexible model in analysing positive data. It contains the Weibull, exponentiated exponential, exponentiated Weibull and beta exponential distributions as special sub-models. We demonstrate that the BW density can be expressed as a mixture of Weibull densities. We provide their moments and two closed-form expressions for their moment-generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, reliability and two entropies. The density of the BW-order statistics is a mixture of Weibull densities and two closed-form expressions are derived for their moments. The estimation of the parameters is approached by two methods: moments and maximum likelihood. We compare the performances of the estimates obtained from both the methods by simulation. The expected information matrix is derived. For the first time, we introduce a log-BW regression model to analyse censored data. The usefulness of the BW distribution is illustrated in the analysis of three real data sets. 相似文献
8.
Kahadawala Cooray 《Journal of applied statistics》2010,37(1):171-179
A generalization of the Gumbel distribution is presented to deal with general situations in modeling univariate data with broad range of skewness in the density function. This generalization is derived by considering a logarithmic transformation of an odd Weibull random variable. As a result, the generalized Gumbel distribution is not only useful for testing goodness-of-fit of Gumbel and reverse-Gumbel distributions as submodels, but it is also convenient for modeling and fitting a wide variety of data sets that are not possible to be modeled by well-known distributions. Skewness and kurtosis shapes of the generalized Gumbel distribution are illustrated by constructing the Galton’s skewness and Moor’s kurtosis plane. Parameters are estimated by using maximum likelihood method in two different ways due to the fact that the reverse transformation of the proposed distribution does not change its density function. In order to illustrate the flexibility of this generalization, wave and surge height data set is analyzed, and the fitness is compared with Gumbel and generalized extreme value distributions. 相似文献
9.
Gauss M. Cordeiro Antonio Eduardo Gomes Cibele Queiroz da-Silva 《Journal of Statistical Computation and Simulation》2013,83(1):114-138
The Weibull distribution is one of the most important distributions in reliability. For the first time, we introduce the beta exponentiated Weibull distribution which extends recent models by Lee et al. [Beta-Weibull distribution: some properties and applications to censored data, J. Mod. Appl. Statist. Meth. 6 (2007), pp. 173–186] and Barreto-Souza et al. [The beta generalized exponential distribution, J. Statist. Comput. Simul. 80 (2010), pp. 159–172]. The new distribution is an important competitive model to the Weibull, exponentiated exponential, exponentiated Weibull, beta exponential and beta Weibull distributions since it contains all these models as special cases. We demonstrate that the density of the new distribution can be expressed as a linear combination of Weibull densities. We provide the moments and two closed-form expressions for the moment-generating function. Explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, reliability and entropies. The density of the order statistics can also be expressed as a linear combination of Weibull densities. We obtain the moments of the order statistics. The expected information matrix is derived. We define a log-beta exponentiated Weibull regression model to analyse censored data. The estimation of the parameters is approached by the method of maximum likelihood. The usefulness of the new distribution to analyse positive data is illustrated in two real data sets. 相似文献
10.
The exponentiated Gumbel model has been shown to be useful in climate modeling including global warming problem, flood frequency analysis, offshore modeling, rainfall modeling, and wind speed modeling. Here, we consider estimation of the probability density function (PDF) and the cumulative distribution function (CDF) of the exponentiated Gumbel distribution. The following estimators are considered: uniformly minimum variance unbiased (UMVU) estimator, maximum likelihood (ML) estimator, percentile (PC) estimator, least-square (LS) estimator, and weighted least-square (WLS) estimator. Analytical expressions are derived for the bias and the mean squared error. Simulation studies and real data applications show that the ML estimator performs better than others. 相似文献
11.
Debasis Kundu 《Statistics》2017,51(6):1377-1397
Azzalini [A class of distributions which include the normal. Scand J Stat. 1985;12:171–178] introduced a skew-normal distribution of which normal distribution is a special case. Recently, Kundu [Geometric skew normal distribution. Sankhya Ser B. 2014;76:167–189] introduced a geometric skew-normal distribution and showed that it has certain advantages over Azzalini's skew-normal distribution. In this paper we discuss about the multivariate geometric skew-normal (MGSN) distribution. It can be used as an alternative to Azzalini's skew-normal distribution. We discuss different properties of the proposed distribution. It is observed that the joint probability density function of the MGSN distribution can take a variety of shapes. Several characterization results have been established. Generation from an MGSN distribution is quite simple, hence the simulation experiments can be performed quite easily. The maximum likelihood estimators of the unknown parameters can be obtained quite conveniently using the expectation–maximization (EM) algorithm. We perform some simulation experiments and it is observed that the performances of the proposed EM algorithm are quite satisfactory. Furthermore, the analyses of two data sets have been performed, and it is observed that the proposed methods and the model work very well. 相似文献
12.
《Journal of Statistical Computation and Simulation》2012,82(4):707-728
We study general mathematical properties of a new class of continuous distributions with an extra positive parameter called the type I half-logistic family. We present some special models and investigate the asymptotics and shapes. The new density function can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. We derive a power series for the quantile function. Explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Bonferroni and Lorenz curves, Shannon and Rényi entropies and order statistics are determined. We introduce a bivariate extension of the new family. We discuss the estimation of the model parameters by maximum likelihood and illustrate its potentiality by means of two applications to real data. 相似文献
13.
Gauss M. Cordeiro Morad Alizadeh Thiago G. Ramires Edwin M. M. Ortega 《统计学通讯:理论与方法》2017,46(11):5685-5705
We introduce and study general mathematical properties of a new generator of continuous distributions with one extra parameter called the generalized odd half-Cauchy family. We present some special models and investigate the asymptotics and shapes. The new density function can be expressed as a linear mixture of exponentiated densities based on the same baseline distribution. We derive a power series for the quantile function. We discuss the estimation of the model parameters by maximum likelihood and prove empirically the flexibility of the new family by means of two real data sets. 相似文献
14.
Subrata Chakraborty Dhrubajyoti Chakravarty Josmar Mazucheli Wesley Bertoli 《Journal of applied statistics》2021,48(4):712
A discrete version of the Gumbel distribution (Type-I Extreme Value distribution) has been derived by using the general approach of discretization of a continuous distribution. Important distributional and reliability properties have been explored. It has been shown that depending on the choice of parameters the proposed distribution can be positively or negatively skewed; possess long-tail(s). Log-concavity of the distribution and consequent results have been established. Estimation of parameters by method of maximum likelihood, method of moments, and method of proportions has been discussed. A method of checking model adequacy and regression type estimation based on empirical survival function has also been examined. A simulation study has been carried out to compare and check the efficacy of the three methods of estimations. The distribution has been applied to model three real count data sets from diverse application area namely, survival times in number of days, maximum annual floods data from Brazil and goal differences in English premier league, and the results show the relevance of the proposed distribution. 相似文献
15.
《Journal of Statistical Computation and Simulation》2012,82(11):2241-2261
ABSTRACTThe generalized extreme value distribution and its particular case, the Gumbel extreme value distribution, are widely applied for extreme value analysis. The Gumbel distribution has certain drawbacks because it is a non-heavy-tailed distribution and is characterized by constant skewness and kurtosis. The generalized extreme value distribution is frequently used in this context because it encompasses the three possible limiting distributions for a normalized maximum of infinite samples of independent and identically distributed observations. However, the generalized extreme value distribution might not be a suitable model when each observed maximum does not come from a large number of observations. Hence, other forms of generalizations of the Gumbel distribution might be preferable. Our goal is to collect in the present literature the distributions that contain the Gumbel distribution embedded in them and to identify those that have flexible skewness and kurtosis, are heavy-tailed and could be competitive with the generalized extreme value distribution. The generalizations of the Gumbel distribution are described and compared using an application to a wind speed data set and Monte Carlo simulations. We show that some distributions suffer from overparameterization and coincide with other generalized Gumbel distributions with a smaller number of parameters, that is, are non-identifiable. Our study suggests that the generalized extreme value distribution and a mixture of two extreme value distributions should be considered in practical applications. 相似文献
16.
17.
Probability plots are often used to estimate the parameters of distributions. Using large sample properties of the empirical distribution function and order statistics, weights to stabilize the variance in order to perform weighted least squares regression are derived. Weighted least squares regression is then applied to the estimation of the parameters of the Weibull, and the Gumbel distribution. The weights are independent of the parameters of the distributions considered. Monte Carlo simulation shows that the weighted least-squares estimators outperform the usual least-squares estimators totally, especially in small samples. 相似文献
18.
Goodness of fit tests for the multiple logistic regression model 总被引:1,自引:0,他引:1
Several test statistics are proposed for the purpose of assessing the goodness of fit of the multiple logistic regression model. The test statistics are obtained by applying a chi-square test for a contingency table in which the expected frequencies are determined using two different grouping strategies and two different sets of distributional assumptions. The null distributions of these statistics are examined by applying the theory for chi-square tests of Moore Spruill (1975) and through computer simulations. All statistics are shown to have a chi-square distribution or a distribution which can be well approximated by a chi-square. The degrees of freedom are shown to depend on the particular statistic and the distributional assumptions. The power of each of the proposed statistics is examined for the normal, linear, and exponential alternative models using computer simulations. 相似文献
19.
The popular generalized extreme value (GEV) distribution has not been a flexible model for extreme values in many areas. We propose a generalization – referred to as the Kumaraswamy GEV distribution – and provide a comprehensive treatment of its mathematical properties. We estimate its parameters by the method of maximum likelihood and provide the observed information matrix. An application to some real data illustrates flexibility of the new model. Finally, some bivariate generalizations of the model are proposed. 相似文献
20.
AbstractThe log-normal distribution is widely used to model non-negative data in many areas of applied research. In this paper, we introduce and study a family of distributions with non-negative reals as support and termed the log-epsilon-skew normal (LESN) which includes the log-normal distributions as a special case. It is related to the epsilon-skew normal developed in Mudholkar and Hutson (2000) the way the log-normal is related to the normal distribution. We study its main properties, hazard function, moments, skewness and kurtosis coefficients, and discuss maximum likelihood estimation of model parameters. We summarize the results of a simulation study to examine the behavior of the maximum likelihood estimates, and we illustrate the maximum likelihood estimation of the LESN distribution parameters to two real world data sets. 相似文献