首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The prediction distribution of future responses from a multivariate linear model with error having a multivariatet-distribution and intra-class covariance structure has been derived. The distribution depends on ρ, the intra-class correlation coefficient. For unknown ρ, the marginal likelihood function of ρ has been obtained and the prediction distribution has been approximated by the estimate of ρ. As an application, a β-expectation tolerance region for the model has been constructed.  相似文献   

2.
Omid Khademnoe 《Statistics》2016,50(5):974-990
There has been substantial recent attention on problems involving a functional linear regression model with scalar response. Among them, there have been few works dealing with asymptotic distribution of prediction in functional linear regression models. In recent literature, the centeral limit theorem for prediction has been discussed, but the proof and conditions under which the random bias terms for a fixed predictor converge to zero have been ignored so that the impact of these terms on the convergence of the prediction has not been well understood. Clarifying the proof and conditions under which the bias terms converge to zero, we show that the asymptotic distribution of the prediction is normal. Furthermore, we have derived those results related to other terms that already obtained by others, under milder conditions. Finally, we conduct a simulation study to investigate performance of the asymptotic distribution under various parameter settings.  相似文献   

3.
The average likelihood, defined as the integral of the like-lihood function over the parameter space, has been used as a criterion for model selection The form of the average likelihood considered uses a uniform prior. An approximation is presented based on fiducial distributions. The sampling distributions of the average likelihood and its fiducial approximation are derived for cases of sampling from one parameter members of the general-ized gamma distributions.  相似文献   

4.
We Consider the generalized multivariate linear model and assume the covariance matrix of the p x 1 vector of responses on a given individual can be represented in the general linear structure form described by Anderson (1973). The effects of the use of estimates of the parameters of the covariance matrix on the generalized least squares estimator of the regression coefficients and on the prediction of a portion of a future vector, when only the first portion of the vector has been observed, are investigated. Approximations are derived for the covariance matrix of the generalized least squares estimator and for the mean square error matrix of the usual predictor, for the practical case where estimated parameters are used.  相似文献   

5.
The purpose of this paper is to discuss response surface designs for multivariate generalized linear models (GLMs). Such models are considered whenever several response variables can be measured for each setting of a group of control variables, and the response variables are adequately represented by GLMs. The mean-squared error of prediction (MSEP) matrix is used to assess the quality of prediction associated with a given design. The MSEP incorporates both the prediction variance and the prediction bias, which results from using maximum likelihood estimates of the parameters of the fitted linear predictor. For a given design, quantiles of a scalar-valued function of the MSEP are obtained within a certain region of interest. The quantiles depend on the unknown parameters of the linear predictor. The dispersion of these quantiles over the space of the unknown parameters is determined and then depicted by the so-called quantile dispersion graphs. An application of the proposed methodology is presented using the special case of the bivariate binary distribution.  相似文献   

6.
Abstract.  The plug-in solution is usually not entirely adequate for computing prediction intervals, as their coverage probability may differ substantially from the nominal value. Prediction intervals with improved coverage probability can be defined by adjusting the plug-in ones, using rather complicated asymptotic procedures or suitable simulation techniques. Other approaches are based on the concept of predictive likelihood for a future random variable. The contribution of this paper is the definition of a relatively simple predictive distribution function giving improved prediction intervals. This distribution function is specified as a first-order unbiased modification of the plug-in predictive distribution function based on the constrained maximum likelihood estimator. Applications of the results to the Gaussian and the generalized extreme-value distributions are presented.  相似文献   

7.
In a clinical trial, the responses to the new treatment may vary among patient subsets with different characteristics in a biomarker. It is often necessary to examine whether there is a cutpoint for the biomarker that divides the patients into two subsets of those with more favourable and less favourable responses. More generally, we approach this problem as a test of homogeneity in the effects of a set of covariates in generalized linear regression models. The unknown cutpoint results in a model with nonidentifiability and a nonsmooth likelihood function to which the ordinary likelihood methods do not apply. We first use a smooth continuous function to approximate the indicator function defining the patient subsets. We then propose a penalized likelihood ratio test to overcome the model irregularities. Under the null hypothesis, we prove that the asymptotic distribution of the proposed test statistic is a mixture of chi-squared distributions. Our method is based on established asymptotic theory, is simple to use, and works in a general framework that includes logistic, Poisson, and linear regression models. In extensive simulation studies, we find that the proposed test works well in terms of size and power. We further demonstrate the use of the proposed method by applying it to clinical trial data from the Digitalis Investigation Group (DIG) on heart failure.  相似文献   

8.
Abstract

This paper deals with Bayesian estimation and prediction for the inverse Weibull distribution with shape parameter α and scale parameter λ under general progressive censoring. We prove that the posterior conditional density functions of α and λ are both log-concave based on the assumption that λ has a gamma prior distribution and α follows a prior distribution with log-concave density. Then, we present the Gibbs sampling strategy to estimate under squared-error loss any function of the unknown parameter vector (α, λ) and find credible intervals, as well as to obtain prediction intervals for future order statistics. Monte Carlo simulations are given to compare the performance of Bayesian estimators derived via Gibbs sampling with the corresponding maximum likelihood estimators, and a real data analysis is discussed in order to illustrate the proposed procedure. Finally, we extend the developed methodology to other two-parameter distributions, including the Weibull, Burr type XII, and flexible Weibull distributions, and also to general progressive hybrid censoring.  相似文献   

9.
An alternative technique to current methods for constructing a prediction function for the normal linear regression model is proposed based on the concept of maximum likelihood. The form of this prediction function is evaluated and normalized to produce a multivariate Student's t-density. Consistency properties are established under regularity conditions, and an empirical comparison, based on the Kullback-Leibler information divergence, is made with some other prediction functions.  相似文献   

10.
The location-scale model with equi-correlated responses is discussed. The structure of the location-scale model is utilised to genera-te the prediction distribution of a future response and that of a set of future responses. The method avoids the integration procedures usually involved in derivation of prediction distributions and yields results same as those obtained by the Bayes method with the vague prior distribution* Finally the re-suits have been specialised to cover the case of the normal intra-class model.  相似文献   

11.
In this paper, we consider the empirical likelihood inferences of the partial functional linear model with missing responses. Two empirical log-likelihood ratios of the parameters of interest are constructed, and the corresponding maximum empirical likelihood estimators of parameters are derived. Under some regularity conditions, we show that the proposed two empirical log-likelihood ratios are asymptotic standard Chi-squared. Thus, the asymptotic results can be used to construct the confidence intervals/regions for the parameters of interest. We also establish the asymptotic distribution theory of corresponding maximum empirical likelihood estimators. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths of confidence intervals. An example of real data is also used to illustrate our proposed methods.  相似文献   

12.
This article presents the techniques of likelihood prediction for the generalized linear mixed models. Methods of likelihood prediction are explained through a series of examples; from a classical one to more complicated ones. The examples show, in simple cases, that the likelihood prediction (LP) coincides with already known best frequentist practice such as the best linear unbiased predictor. This article outlines a way to deal with the covariate uncertainty while producing predictive inference. Using a Poisson errors-in-variable generalized linear model, it has been shown in certain cases that LP produces better results than already known methods.  相似文献   

13.
In this article, we introduce a new extension of the generalized linear failure rate (GLFR) distributions. It includes some well-known lifetime distributions such as extension of generalized exponential and GLFR distributions as special sub-models. In addition, it can have a constant, decreasing, increasing, upside-down bathtub (unimodal), and bathtub-shaped hazard rate function (hrf) depending on its parameters. We provide some of its statistical properties such as moments, quantiles, skewness, kurtosis, hrf, and reversible hrf. The maximum likelihood estimation of the parameters is also discussed. At the end, a real dataset is given to illustrate the usefulness of this new distribution in analyzing lifetime data.  相似文献   

14.
In this paper we derive the predictive density function of a future observation when prior distribution for unknown mean of a normal population is a Type-II maximum likelihood ε-contaminated prior. The derived predictive distribution is applied to the problem of optimization of a regression nature in the decisive prediction framework.  相似文献   

15.
The multivariate t linear mixed model (MtLMM) has been recently proposed as a robust tool for analysing multivariate longitudinal data with atypical observations. Missing outcomes frequently occur in longitudinal research even in well controlled situations. As a powerful alternative to the traditional expectation maximization based algorithm employing single imputation, we consider a Bayesian analysis of the MtLMM to account for the uncertainties of model parameters and missing outcomes through multiple imputation. An inverse Bayes formulas sampler coupled with Metropolis-within-Gibbs scheme is used to effectively draw the posterior distributions of latent data and model parameters. The techniques for multiple imputation of missing values, estimation of random effects, prediction of future responses, and diagnostics of potential outliers are investigated as well. The proposed methodology is illustrated through a simulation study and an application to AIDS/HIV data.  相似文献   

16.
In this paper we review some results that have been derived on record values for some well known probability density functions and based on m records from Kumaraswamy’s distribution we obtain estimators for the two parameters and the future sth record value. These estimates are derived using the maximum likelihood and Bayesian approaches. In the Bayesian approach, the two parameters are assumed to be random variables and estimators for the parameters and for the future sth record value are obtained, when we have observed m past record values, using the well known squared error loss (SEL) function and a linear exponential (LINEX) loss function. The findings are illustrated with actual and computer generated data.  相似文献   

17.
Maximum-likelihood estimation is interpreted as a procedure for generating approximate pivotal quantities, that is, functions u(X;θ) of the data X and parameter θ that have distributions not involving θ. Further, these pivotals should be efficient in the sense of reproducing approximately the likelihood function of θ based on X, and they should be approximately linear in θ. To this end the effect of replacing θ by a parameter ϕ = ϕ(θ) is examined. The relationship of maximum-likelihood estimation interpreted in this way to conditional inference is discussed. Examples illustrating this use of maximum-likelihood estimation on small samples are given.  相似文献   

18.
Asymptotic distributions of maximum likelihood estimators for the parameters in explosive growth curve models are derived. Limit distributions of prediction errors when the parameters are estimated are also obtained. The growth curve models are viewed as multivariate time-series models, and the usual time-series methods are used for prediction. Estimation constrained by a hypothesis of homogeneity of growth rates is also considered.  相似文献   

19.
In this article, we propose two novel diagnostic measures for the deletion of influential observations for regression parameters in the setting of generalized linear models. The proposed diagnostic methods are capable for detecting the influential observations under model misspecification, as long as the true underlying distributions have finite second moments.More specifically, it is demonstrated that the Poisson likelihood function can be properly adjusted to become asymptotically valid for practically all underlying discrete distributions. The adjusted Poisson regression model that achieves the robustness property is presented. Simulation studies and an illustration are performed to demonstrate the efficacy of the two novel diagnostic procedures.  相似文献   

20.
In this study, we investigate the concept of the mean response for a treatment group mean as well as its estimation and prediction for generalized linear models with a subject‐wise random effect. Generalized linear models are commonly used to analyze categorical data. The model‐based mean for a treatment group usually estimates the response at the mean covariate. However, the mean response for the treatment group for studied population is at least equally important in the context of clinical trials. New methods were proposed to estimate such a mean response in generalized linear models; however, this has only been done when there are no random effects in the model. We suggest that, in a generalized linear mixed model (GLMM), there are at least two possible definitions of a treatment group mean response that can serve as estimation/prediction targets. The estimation of these treatment group means is important for healthcare professionals to be able to understand the absolute benefit vs risk. For both of these treatment group means, we propose a new set of methods that suggests how to estimate/predict both of them in a GLMMs with a univariate subject‐wise random effect. Our methods also suggest an easy way of constructing corresponding confidence and prediction intervals for both possible treatment group means. Simulations show that proposed confidence and prediction intervals provide correct empirical coverage probability under most circumstances. Proposed methods have also been applied to analyze hypoglycemia data from diabetes clinical trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号