首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Model-based clustering methods for continuous data are well established and commonly used in a wide range of applications. However, model-based clustering methods for categorical data are less standard. Latent class analysis is a commonly used method for model-based clustering of binary data and/or categorical data, but due to an assumed local independence structure there may not be a correspondence between the estimated latent classes and groups in the population of interest. The mixture of latent trait analyzers model extends latent class analysis by assuming a model for the categorical response variables that depends on both a categorical latent class and a continuous latent trait variable; the discrete latent class accommodates group structure and the continuous latent trait accommodates dependence within these groups. Fitting the mixture of latent trait analyzers model is potentially difficult because the likelihood function involves an integral that cannot be evaluated analytically. We develop a variational approach for fitting the mixture of latent trait models and this provides an efficient model fitting strategy. The mixture of latent trait analyzers model is demonstrated on the analysis of data from the National Long Term Care Survey (NLTCS) and voting in the U.S. Congress. The model is shown to yield intuitive clustering results and it gives a much better fit than either latent class analysis or latent trait analysis alone.  相似文献   

2.
This paper addresses the problem of co-clustering binary data in the latent block model framework with diagonal constraints for resulting data partitions. We consider the Bernoulli generative mixture model and present three new methods differing in the assumptions made about the degree of homogeneity of diagonal blocks. The proposed models are parsimonious and allow to take into account the structure of a data matrix when reorganizing it into homogeneous diagonal blocks. We derive algorithms for each of the presented models based on the classification expectation-maximization algorithm which maximizes the complete data likelihood. We show that our contribution can outperform other state-of-the-art (co)-clustering methods on synthetic sparse and non-sparse data. We also prove the efficiency of our approach in the context of document clustering, by using real-world benchmark data sets.  相似文献   

3.
Cross-validated likelihood is investigated as a tool for automatically determining the appropriate number of components (given the data) in finite mixture modeling, particularly in the context of model-based probabilistic clustering. The conceptual framework for the cross-validation approach to model selection is straightforward in the sense that models are judged directly on their estimated out-of-sample predictive performance. The cross-validation approach, as well as penalized likelihood and McLachlan's bootstrap method, are applied to two data sets and the results from all three methods are in close agreement. The second data set involves a well-known clustering problem from the atmospheric science literature using historical records of upper atmosphere geopotential height in the Northern hemisphere. Cross-validated likelihood provides an interpretable and objective solution to the atmospheric clustering problem. The clusters found are in agreement with prior analyses of the same data based on non-probabilistic clustering techniques.  相似文献   

4.
In cluster analysis interest lies in probabilistically capturing partitions of individuals, items or observations into groups, such that those belonging to the same group share similar attributes or relational profiles. Bayesian posterior samples for the latent allocation variables can be effectively obtained in a wide range of clustering models, including finite mixtures, infinite mixtures, hidden Markov models and block models for networks. However, due to the categorical nature of the clustering variables and the lack of scalable algorithms, summary tools that can interpret such samples are not available. We adopt a Bayesian decision theoretical approach to define an optimality criterion for clusterings and propose a fast and context-independent greedy algorithm to find the best allocations. One important facet of our approach is that the optimal number of groups is automatically selected, thereby solving the clustering and the model-choice problems at the same time. We consider several loss functions to compare partitions and show that our approach can accommodate a wide range of cases. Finally, we illustrate our approach on both artificial and real datasets for three different clustering models: Gaussian mixtures, stochastic block models and latent block models for networks.  相似文献   

5.
We define the mixture likelihood approach to clustering by discussing the sampling distribution of the likelihood ratio test of the null hypothesis that we have observed a sample of observations of a variable having the bivariate normal distribution versus the alternative that the variable has the bivariate normal mixture with unequal means and common within component covariance matrix. The empirical distribution of the likelihood ratio test indicates that convergence to the chi-squared distribution with 2 df is at best very slow, that the sample size should be 5000 or more for the chi-squared result to hold, and that for correlations between 0.1 and 0.9 there is little, if any, dependence of the null distribution on the correlation. Our simulation study suggests a heuristic function based on the gamma.  相似文献   

6.
ABSTRACT

We propose a new unsupervised learning algorithm to fit regression mixture models with unknown number of components. The developed approach consists in a penalized maximum likelihood estimation carried out by a robust expectation–maximization (EM)-like algorithm. We derive it for polynomial, spline, and B-spline regression mixtures. The proposed learning approach is unsupervised: (i) it simultaneously infers the model parameters and the optimal number of the regression mixture components from the data as the learning proceeds, rather than in a two-fold scheme as in standard model-based clustering using afterward model selection criteria, and (ii) it does not require accurate initialization unlike the standard EM for regression mixtures. The developed approach is applied to curve clustering problems. Numerical experiments on simulated and real data show that the proposed algorithm performs well and provides accurate clustering results, and confirm its benefit for practical applications.  相似文献   

7.
The problem of clustering individuals is considered within the context of a mixture of distributions. A modification of the usual approach to population mixtures is employed. As usual, a parametric family of distributions is considered, a set of parameter values being associated with each population. In addition, with each observation is associated an identification parameter, Indicating from which population the observation arose. Theresulting likelihood function is interpreted in terms of the conditional probability density of a sample from a mixture of populations, given the identification parameter of each observation. Clustering algorithms are obtained by applying a method of iterated maximum likelihood to this like-lihood function.  相似文献   

8.
In the framework of model-based cluster analysis, finite mixtures of Gaussian components represent an important class of statistical models widely employed for dealing with quantitative variables. Within this class, we propose novel models in which constraints on the component-specific variance matrices allow us to define Gaussian parsimonious clustering models. Specifically, the proposed models are obtained by assuming that the variables can be partitioned into groups resulting to be conditionally independent within components, thus producing component-specific variance matrices with a block diagonal structure. This approach allows us to extend the methods for model-based cluster analysis and to make them more flexible and versatile. In this paper, Gaussian mixture models are studied under the above mentioned assumption. Identifiability conditions are proved and the model parameters are estimated through the maximum likelihood method by using the Expectation-Maximization algorithm. The Bayesian information criterion is proposed for selecting the partition of the variables into conditionally independent groups. The consistency of the use of this criterion is proved under regularity conditions. In order to examine and compare models with different partitions of the set of variables a hierarchical algorithm is suggested. A wide class of parsimonious Gaussian models is also presented by parameterizing the component-variance matrices according to their spectral decomposition. The effectiveness and usefulness of the proposed methodology are illustrated with two examples based on real datasets.  相似文献   

9.
In many financial applications, Poisson mixture regression models are commonly used to analyze heterogeneous count data. When fitting these models, the observed counts are supposed to come from two or more subpopulations and parameter estimation is typically performed by means of maximum likelihood via the Expectation–Maximization algorithm. In this study, we discuss briefly the procedure for fitting Poisson mixture regression models by means of maximum likelihood, the model selection and goodness-of-fit tests. These models are applied to a real data set for credit-scoring purposes. We aim to reveal the impact of demographic and financial variables in creating different groups of clients and to predict the group to which each client belongs, as well as his expected number of defaulted payments. The model's conclusions are very interesting, revealing that the population consists of three groups, contrasting with the traditional good versus bad categorization approach of the credit-scoring systems.  相似文献   

10.
Dimension reduction for model-based clustering   总被引:1,自引:0,他引:1  
We introduce a dimension reduction method for visualizing the clustering structure obtained from a finite mixture of Gaussian densities. Information on the dimension reduction subspace is obtained from the variation on group means and, depending on the estimated mixture model, on the variation on group covariances. The proposed method aims at reducing the dimensionality by identifying a set of linear combinations, ordered by importance as quantified by the associated eigenvalues, of the original features which capture most of the cluster structure contained in the data. Observations may then be projected onto such a reduced subspace, thus providing summary plots which help to visualize the clustering structure. These plots can be particularly appealing in the case of high-dimensional data and noisy structure. The new constructed variables capture most of the clustering information available in the data, and they can be further reduced to improve clustering performance. We illustrate the approach on both simulated and real data sets.  相似文献   

11.
Model-based classification using latent Gaussian mixture models   总被引:1,自引:0,他引:1  
A novel model-based classification technique is introduced based on parsimonious Gaussian mixture models (PGMMs). PGMMs, which were introduced recently as a model-based clustering technique, arise from a generalization of the mixtures of factor analyzers model and are based on a latent Gaussian mixture model. In this paper, this mixture modelling structure is used for model-based classification and the particular area of application is food authenticity. Model-based classification is performed by jointly modelling data with known and unknown group memberships within a likelihood framework and then estimating parameters, including the unknown group memberships, within an alternating expectation-conditional maximization framework. Model selection is carried out using the Bayesian information criteria and the quality of the maximum a posteriori classifications is summarized using the misclassification rate and the adjusted Rand index. This new model-based classification technique gives excellent classification performance when applied to real food authenticity data on the chemical properties of olive oils from nine areas of Italy.  相似文献   

12.
Variable selection in cluster analysis is important yet challenging. It can be achieved by regularization methods, which realize a trade-off between the clustering accuracy and the number of selected variables by using a lasso-type penalty. However, the calibration of the penalty term can suffer from criticisms. Model selection methods are an efficient alternative, yet they require a difficult optimization of an information criterion which involves combinatorial problems. First, most of these optimization algorithms are based on a suboptimal procedure (e.g. stepwise method). Second, the algorithms are often computationally expensive because they need multiple calls of EM algorithms. Here we propose to use a new information criterion based on the integrated complete-data likelihood. It does not require the maximum likelihood estimate and its maximization appears to be simple and computationally efficient. The original contribution of our approach is to perform the model selection without requiring any parameter estimation. Then, parameter inference is needed only for the unique selected model. This approach is used for the variable selection of a Gaussian mixture model with conditional independence assumed. The numerical experiments on simulated and benchmark datasets show that the proposed method often outperforms two classical approaches for variable selection. The proposed approach is implemented in the R package VarSelLCM available on CRAN.  相似文献   

13.
For clustering mixed categorical and continuous data, Lawrence and Krzanowski (1996) proposed a finite mixture model in which component densities conform to the location model. In the graphical models literature the location model is known as the homogeneous Conditional Gaussian model. In this paper it is shown that their model is not identifiable without imposing additional restrictions. Specifically, for g groups and m locations, (g!)m–1 distinct sets of parameter values (not including permutations of the group mixing parameters) produce the same likelihood function. Excessive shrinkage of parameter estimates in a simulation experiment reported by Lawrence and Krzanowski (1996) is shown to be an artifact of the model's non-identifiability. Identifiable finite mixture models can be obtained by imposing restrictions on the conditional means of the continuous variables. These new identified models are assessed in simulation experiments. The conditional mean structure of the continuous variables in the restricted location mixture models is similar to that in the underlying variable mixture models proposed by Everitt (1988), but the restricted location mixture models are more computationally tractable.  相似文献   

14.
Robust mixture modelling using the t distribution   总被引:2,自引:0,他引:2  
Normal mixture models are being increasingly used to model the distributions of a wide variety of random phenomena and to cluster sets of continuous multivariate data. However, for a set of data containing a group or groups of observations with longer than normal tails or atypical observations, the use of normal components may unduly affect the fit of the mixture model. In this paper, we consider a more robust approach by modelling the data by a mixture of t distributions. The use of the ECM algorithm to fit this t mixture model is described and examples of its use are given in the context of clustering multivariate data in the presence of atypical observations in the form of background noise.  相似文献   

15.
The latent class model or multivariate multinomial mixture is a powerful approach for clustering categorical data. It uses a conditional independence assumption given the latent class to which a statistical unit is belonging. In this paper, we exploit the fact that a fully Bayesian analysis with Jeffreys non-informative prior distributions does not involve technical difficulty to propose an exact expression of the integrated complete-data likelihood, which is known as being a meaningful model selection criterion in a clustering perspective. Similarly, a Monte Carlo approximation of the integrated observed-data likelihood can be obtained in two steps: an exact integration over the parameters is followed by an approximation of the sum over all possible partitions through an importance sampling strategy. Then, the exact and the approximate criteria experimentally compete, respectively, with their standard asymptotic BIC approximations for choosing the number of mixture components. Numerical experiments on simulated data and a biological example highlight that asymptotic criteria are usually dramatically more conservative than the non-asymptotic presented criteria, not only for moderate sample sizes as expected but also for quite large sample sizes. This research highlights that asymptotic standard criteria could often fail to select some interesting structures present in the data.  相似文献   

16.
This paper examines the relative performance of two commonly used clustering methods based on maximum likelihood in the context of classifying a sample of observations of unknown origin arising from two normal populations with a common covariance matrix. the associated properties of the two methods are compared by conducting a series of simulation experiments under both mixture and separate sampling schemes.  相似文献   

17.
Model-based clustering is a method that clusters data with an assumption of a statistical model structure. In this paper, we propose a novel model-based hierarchical clustering method for a finite statistical mixture model based on the Fisher distribution. The main foci of the proposed method are: (a) provide efficient solution to estimate the parameters of a Fisher mixture model (FMM); (b) generate a hierarchy of FMMs and (c) select the optimal model. To this aim, we develop a Bregman soft clustering method for FMM. Our model estimation strategy exploits Bregman divergence and hierarchical agglomerative clustering. Whereas, our model selection strategy comprises a parsimony-based approach and an evaluation graph-based approach. We empirically validate our proposed method by applying it on simulated data. Next, we apply the method on real data to perform depth image analysis. We demonstrate that the proposed clustering method can be used as a potential tool for unsupervised depth image analysis.  相似文献   

18.
Model-based clustering typically involves the development of a family of mixture models and the imposition of these models upon data. The best member of the family is then chosen using some criterion and the associated parameter estimates lead to predicted group memberships, or clusterings. This paper describes the extension of the mixtures of multivariate t-factor analyzers model to include constraints on the degrees of freedom, the factor loadings, and the error variance matrices. The result is a family of six mixture models, including parsimonious models. Parameter estimates for this family of models are derived using an alternating expectation-conditional maximization algorithm and convergence is determined based on Aitken’s acceleration. Model selection is carried out using the Bayesian information criterion (BIC) and the integrated completed likelihood (ICL). This novel family of mixture models is then applied to simulated and real data where clustering performance meets or exceeds that of established model-based clustering methods. The simulation studies include a comparison of the BIC and the ICL as model selection techniques for this novel family of models. Application to simulated data with larger dimensionality is also explored.  相似文献   

19.
This paper gives a comparative study of the K-means algorithm and the mixture model (MM) method for clustering normal data. The EM algorithm is used to compute the maximum likelihood estimators (MLEs) of the parameters of the MM model. These parameters include mixing proportions, which may be thought of as the prior probabilities of different clusters; the maximum posterior (Bayes) rule is used for clustering. Hence, asymptotically the MM method approaches the Bayes rule for known parameters, which is optimal in terms of minimizing the expected misclassification rate (EMCR).  相似文献   

20.
A network cluster is defined as a set of nodes with ‘strong’ within group ties and ‘weak’ between group ties. Most clustering methods focus on finding groups of ‘densely connected’ nodes, where the dyad (or tie between two nodes) serves as the building block for forming clusters. However, since the unweighted dyad cannot distinguish strong relationships from weak ones, it then seems reasonable to consider an alternative building block, i.e. one involving more than two nodes. In the simplest case, one can consider the triad (or three nodes), where the fully connected triad represents the basic unit of transitivity in an undirected network. In this effort we propose a clustering framework for finding highly transitive subgraphs in an undirected/unweighted network, where the fully connected triad (or triangle configuration) is used as the building block for forming clusters. We apply our methodology to four real networks with encouraging results. Monte Carlo simulation results suggest that, on average, the proposed method yields good clustering performance on synthetic benchmark graphs, relative to other popular methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号