首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
ABSTRACT

Consider k(≥ 2) independent exponential populations Π1, Π2, …, Π k , having the common unknown location parameter μ ∈ (?∞, ∞) (also called the guarantee time) and unknown scale parameters σ1, σ2, …σ k , respectively (also called the remaining mean lifetimes after the completion of guarantee times), σ i  > 0, i = 1, 2, …, k. Assume that the correct ordering between σ1, σ2, …, σ k is not known apriori and let σ[i], i = 1, 2, …, k, denote the ith smallest of σ j s, so that σ[1] ≤ σ[2] ··· ≤ σ[k]. Then Θ i  = μ + σ i is the mean lifetime of Π i , i = 1, 2, …, k. Let Θ[1] ≤ Θ[2] ··· ≤ Θ[k] denote the ranked values of the Θ j s, so that Θ[i] = μ + σ[i], i = 1, 2, …, k, and let Π(i) denote the unknown population associated with the ith smallest mean lifetime Θ[i] = μ + σ[i], i = 1, 2, …, k. Based on independent random samples from the k populations, we propose a selection procedure for the goal of selecting the population having the longest mean lifetime Θ[k] (called the “best” population), under the subset selection formulation. Tables for the implementation of the proposed selection procedure are provided. It is established that the proposed subset selection procedure is monotone for a general k (≥ 2). For k = 2, we consider the loss measured by the size of the selected subset and establish that the proposed subset selection procedure is minimax among selection procedures that satisfy a certain probability requirement (called the P*-condition) for the inclusion of the best population in the selected subset.  相似文献   

2.
3.
Summary The problem of the inferential analysis of the linear correlation coefficient of normal bivariate populations is tackled, both from the likelihood and Bayesian viewpoints. In particular it is shown how, using pseudo-likelihood (marginal likelihood function and profile likelihood), hypotheses such asH 0:ϱ=ϱ0 andH 0xy can be verified without prohibitive computation effort. The results of marginal and profile likelihood are compared and it is shown that these two methods are virtually equivalent even for small sample sizes. Furthermore, in suitable conditions, the posterior distribution of the coefficient ϱ can be readily obtained, using the exact form or different approximate formulations of the marginal or profile likelihood. Lastly some possible prior distributions of ϱ are illustrated and some explanatory examples are presented.  相似文献   

4.
5.
In this paper, we consider the simple linear errors-in-variables (EV) regression models: ηi=θ+βxi+εi,ξi=xi+δi,1≤in, where θ,β,x1,x2,… are unknown constants (parameters), (ε1,δ1),(ε2,δ2),… are errors and ξi,ηi,i=1,2,… are observable. The asymptotic normality for the least square (LS) estimators of the unknown parameters β and θ in the model are established under the assumptions that the errors are m-dependent, martingale differences, ?-mixing, ρ-mixing and α-mixing.  相似文献   

6.
This paper investigates the general linear regression model Y = Xβ+e assuming the dependent variable is observed as a scrambled response using Eichhorn & Hayre's (1983) approach to collecting sensitive personal information. The estimates of the parameters in the model remain unbiased, but the variances of the estimates increase due to scrambling. The Wald test of the null hypothesis H0: β=β0, against the alternative hypothesis Ha: β#β0, is also investigated. Parameter estimates obtained from scrambled responses are compared to those from conventional or direct-question surveys, using simulation. The coverage by nominal 95% confidence intervals is also reported.  相似文献   

7.
EMPIRICAL BAYES ESTIMATION WITH NON-IDENTICAL COMPONENTS. CONTINUOUS CASE.   总被引:3,自引:0,他引:3  
In this paper a variant of the standard empirical Bayes estimation problem is considered where the component problems in the sequence are not identical in that the conditional distribution of the observations may vary with the component problems. Let {(Θn, Xn)} be a sequence of independent random vectors where Θn? G and, given Θnn, Xn -PΘ,m(n) with {m(n)} a sequence of positive integers where m(n)≤m? < ∞ for all n. With PΘ,m in a continuous exponential family of distributions, asymptotically optimal empirical Bayes procedures are exhibited which depend on uniform approximations of certain functions on compact sets by polynomials in eΘ. Such approximations have been explicitly calculated in the case of normal and gamma families. In the case of normal families, asymptotically optimal linear empirical Bayes estimators in the class of all linear estimators are derived and shown to have rate O(n-1/2).  相似文献   

8.
9.
10.
11.
A new procedure for testing the H 0: μ1 = ··· = μ k against the alternative H u 1 ≥ ··· ≥μ r  ≤ ··· ≤ μ k with at least one strict inequality, where μ i is the location parameter of the ith two-parameter exponential distribution, i = 1,…, k, is proposed. Exact critical constants are computed using a recursive integration algorithm. Tables containing these critical constants are provided to facilitate the implementation of the proposed test procedure. Simultaneous confidence intervals for certain contrasts of the location parameters are derived by inverting the proposed test statistic. In comparison to existing tests, it is shown, by a simulation study, that the new test statistic is more powerful in detecting U-shaped alternatives when the samples are derived from exponential distributions. As an extension, the use of the critical constants for comparing Pareto distribution parameters is discussed.  相似文献   

12.
13.
It is assumed that k(k?>?2) independent samples of sizes n i (i?=?1, …, k) are available from k lognormal distributions. Four hypothesis cases (H 1H 4) are defined. Under H 1, all k median parameters as well as all k skewness parameters are equal; under H 2, all k skewness parameters are equal but not all k median parameters are equal; under H 3, all k median parameters are equal but not all k skewness parameters are equal; under H 4, neither the k median parameters nor the k skewness parameters are equal. The Expectation Maximization (EM) algorithm is used to obtain the maximum likelihood (ML) estimates of the lognormal parameters in each of these four hypothesis cases. A (2k???1) degree polynomial is solved at each step of the EM algorithm for the H 3 case. A two-stage procedure for testing the equality of the medians either under skewness homogeneity or under skewness heterogeneity is also proposed and discussed. A simulation study was performed for the case k?=?3.  相似文献   

14.
The paper discusses D-optimal axial designs for the additive quadratic and cubic mixture models σ1≤i≤qixi + βiix2i) and σ1≤i≤qixi + βiix2i + βiiix3i), where xi≥ 0, x1 + . . . + xq = 1. For the quadratic model, a saturated symmetric axial design is used, in which support points are of the form (x1, . . . , xq) = [1 ? (q?1)δi, δi, . . . , δi], where i = 1, 2 and 0 ≤δ2 <δ1 ≤ 1/(q ?1). It is proved that when 3 ≤q≤ 6, the above design is D-optimal if δ2 = 0 and δ1 = 1/(q?1), and when q≥ 7 it is D-optimal if δ2 = 0 and δ1 = [5q?1 ? (9q2?10q + 1)1/2]/(4q2). Similar results exist for the cubic model, with support points of the form (x1, . . . , xq) = [1 ? (q?1)δi, δi, . . . , δi], where i = 1, 2, 3 and 0 = δ3 <δ2 < δ1 ≤1/(q?1). The saturated D-optimal axial design and D-optimal design for the quadratic model are compared in terms of their efficiency and uniformity.  相似文献   

15.
We define the Wishart distribution on the cone of positive definite matrices and an exponential distribution on the Lorentz cone as exponential dispersion models. We show that these two distributions possess a property of exact decomposition, and we use this property to solve the following problem: given q samples (yil,… yiNj), i = l,…,q, from a N(μii,) distribution, test H1 = Σ2 = … = σq. Using the exact decomposition property, the classical test statistic for H, involving q parameters pi = (Ni, - l)/2, i = 1,…,q, is replaced by a sequence of q - l test statistics for the sequence of tests Hi,:σ12 = … =σi given that Hi-1 is true, i = 2,…,q. Each one of these test statistics involves two parameters only, p.i-1 = p1 + … + pi-1 and pi. We also use the exact decomposition property to test equality of the “direction parameters” for q sample points from the exponential distribution on the Lorentz cone. We give a table of critical values for the distribution on the three-dimensional Lorentz cone. Tables of critical values in higher dimensions can easily be computed following the same method as in dimension three.  相似文献   

16.
Consider k independent observations Yi (i= 1,., k) from two-parameter exponential populations i with location parameters μ and the same scale parameter If the μi are ranked as consider population as the “worst” population and IIp(k) as the “best” population (with some tagging so that p{) and p(k) are well defined in the case of equalities). If the Yi are ranked as we consider the procedure, “Select provided YR(k) Yr(k) is sufficiently large so that is demonstrably better than the other populations.” A similar procedure is studied for selecting the “demonstrably worst” population.  相似文献   

17.
The authors consider the situation of incomplete rankings in which n judges independently rank ki ∈ {2, …, t} objects. They wish to test the null hypothesis that each judge picks the ranking at random from the space of ki! permutations of the integers 1, …, ki. The statistic considered is a generalization of the Friedman test in which the ranks assigned by each judge are replaced by real‐valued functions a(j, ki), 1 ≤ jkit of the ranks. The authors define a measure of pairwise similarity between complete rankings based on such functions, and use averages of such similarities to construct measures of the level of concordance of the judges' rankings. In the complete ranking case, the resulting statistics coincide with those defined by Hájek & ?idák (1967, p. 118), and Sen (1968). These measures of similarity are extended to the situation of incomplete rankings. A statistic is derived in this more general situation and its properties are investigated.  相似文献   

18.
In this paper an exact distributional framework is developed for analysing an IxJxK contingency table. It is shown that for the case of hypotheses H0:Pijk=Pi..P.j./K and H0:Pijk =Pi..P.j.P..k the exact distributional results do not follow as simple extensions of the corresponding results obtained for an I×J table under the hypothesis of independence. From the factorial moment generating functions, expressions for the covariance matrices in terms of the Kronecker products of matrices, are presented. These expressions give indications whether or not Pearson's chi-square statistic should be corrected by the factor (n?1)/n or not. Marginal and conditional distributions are considered briefly and important differences with regard to the resuits for marginal and conditional distributions for an IxJ table are mentioned.  相似文献   

19.
Abstract

Let the data from the ith treatment/population follow a distribution with cumulative distribution function (cdf) F i (x) = F[(x ? μ i )/θ i ], i = 1,…, k (k ≥ 2). Here μ i (?∞ < μ i  < ∞) is the location parameter, θ i i  > 0) is the scale parameter and F(?) is any absolutely continuous cdf, i.e., F i (?) is a member of location-scale family, i = 1,…, k. In this paper, we propose a class of tests to test the null hypothesis H 0 ? θ1 = · = θ k against the simple ordered alternative H A  ? θ1 ≤ · ≤ θ k with at least one strict inequality. In literature, use of sample quasi range as a measure of dispersion has been advocated for small sample size or sample contaminated by outliers [see David, H. A. (1981). Order Statistics. 2nd ed. New York: John Wiley, Sec. 7.4]. Let X i1,…, X in be a random sample of size n from the population π i and R ir  = X i:n?r  ? X i:r+1, r = 0, 1,…, [n/2] ? 1 be the sample quasi range corresponding to this random sample, where X i:j represents the jth order statistic in the ith sample, j = 1,…, n; i = 1,…, k and [x] is the greatest integer less than or equal to x. The proposed class of tests, for the general location scale setup, is based on the statistic W r  = max1≤i<jk (R jr /R ir ). The test is reject H 0 for large values of W r . The construction of a three-decision procedure and simultaneous one-sided lower confidence bounds for the ratios, θ j i , 1 ≤ i < j ≤ k, have also been discussed with the help of the critical constants of the test statistic W r . Applications of the proposed class of tests to two parameter exponential and uniform probability models have been discussed separately with necessary tables. Comparisons of some members of our class with the tests of Gill and Dhawan [Gill A. N., Dhawan A. K. (1999). A One-sided test for testing homogeneity of scale parameters against ordered alternative. Commun. Stat. – Theory and Methods 28(10):2417–2439] and Kochar and Gupta [Kochar, S. C., Gupta, R. P. (1985). A class of distribution-free tests for testing homogeneity of variances against ordered alternatives. In: Dykstra, R. et al., ed. Proceedings of the Conference on Advances in Order Restricted Statistical Inference at Iowa city. Springer Verlag, pp. 169–183], in terms of simulated power, are also presented.  相似文献   

20.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号