首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Case-control data are often used in medical-related applications, and most studies have applied parametric logistic regression to analyze such data. In this study, we investigated a semiparametric model for the analysis of case-control data by relaxing the linearity assumption of risk factors by using a partial smoothing spline model. A faster computation method for the model by extending the lower-dimensional approximation approach of Gu and Kim 4 Gu, C. and Kim, Y.-J. 2002. Penalized likelihood regression: General formulation and efficient approximation. Canad. J. Statist., 30: 619628. [Crossref], [Web of Science ®] [Google Scholar] developed in penalized likelihood regression is considered to apply to case-control studies. Simulations were conducted to evaluate the performance of the method with selected smoothing parameters and to compare the method with existing methods. The method was applied to Korean gastric cancer case-control data to estimate the nonparametric probability function of age and regression parameters for other categorical risk factors simultaneously. The method could be used in preliminary studies to identify whether there is a flexible function form of risk factors in the semiparametric logistic regression analysis involving a large data set.  相似文献   

2.
We propose a flexible semiparametric stochastic mixed effects model for bivariate cyclic longitudinal data. The model can handle either single cycle or, more generally, multiple consecutive cycle data. The approach models the mean of responses by parametric fixed effects and a smooth nonparametric function for the underlying time effects, and the relationship across the bivariate responses by a bivariate Gaussian random field and a joint distribution of random effects. The proposed model not only can model complicated individual profiles, but also allows for more flexible within-subject and between-response correlations. The fixed effects regression coefficients and the nonparametric time functions are estimated using maximum penalized likelihood, where the resulting estimator for the nonparametric time function is a cubic smoothing spline. The smoothing parameters and variance components are estimated simultaneously using restricted maximum likelihood. Simulation results show that the parameter estimates are close to the true values. The fit of the proposed model on a real bivariate longitudinal dataset of pre-menopausal women also performs well, both for a single cycle analysis and for a multiple consecutive cycle analysis. The Canadian Journal of Statistics 48: 471–498; 2020 © 2020 Statistical Society of Canada  相似文献   

3.
Hypertension is a highly prevalent cardiovascular disease. It marks a considerable cost factor to many national health systems. Despite its prevalence, regional disease distributions are often unknown and must be estimated from survey data. However, health surveys frequently lack in regional observations due to limited resources. Obtained prevalence estimates suffer from unacceptably large sampling variances and are not reliable. Small area estimation solves this problem by linking auxiliary data from multiple regions in suitable regression models. Typically, either unit- or area-level observations are considered for this purpose. But with respect to hypertension, both levels should be used. Hypertension has characteristic comorbidities and is strongly related to lifestyle features, which are unit-level information. It is also correlated with socioeconomic indicators that are usually measured on the area-level. But the level combination is challenging as it requires multi-level model parameter estimation from small samples. We use a multi-level small area model with level-specific penalization to overcome this issue. Model parameter estimation is performed via stochastic coordinate gradient descent. A jackknife estimator of the mean squared error is presented. The methodology is applied to combine health survey data and administrative records to estimate regional hypertension prevalence in Germany.  相似文献   

4.
ABSTRACT

This article considers nonparametric regression problems and develops a model-averaging procedure for smoothing spline regression problems. Unlike most smoothing parameter selection studies determining an optimum smoothing parameter, our focus here is on the prediction accuracy for the true conditional mean of Y given a predictor X. Our method consists of two steps. The first step is to construct a class of smoothing spline regression models based on nonparametric bootstrap samples, each with an appropriate smoothing parameter. The second step is to average bootstrap smoothing spline estimates of different smoothness to form a final improved estimate. To minimize the prediction error, we estimate the model weights using a delete-one-out cross-validation procedure. A simulation study has been performed by using a program written in R. The simulation study provides a comparison of the most well known cross-validation (CV), generalized cross-validation (GCV), and the proposed method. This new method is straightforward to implement, and gives reliable performances in simulations.  相似文献   

5.
A partial spline model is used to estimate an unknown function which is smooth except for some break points. Assuming the break points are known, a Generalized Cross-Validated smoothing spline estimation method is proposed. Some interval estimation methods for the magnitude of the discontinuities based on the mean square error are introduced and investigated.  相似文献   

6.
The skew-probit link function is one of the popular choices for modelling the success probability of a binary variable with regard to covariates. This link deviates from the probit link function in terms of a flexible skewness parameter. For this flexible link, the identifiability of the parameters is investigated. Next, to reduce the bias of the maximum likelihood estimator of the skew-probit model we propose to use the penalized likelihood approach. We consider three different penalty functions, and compare them via extensive simulation studies. Based on the simulation results we make some practical recommendations. For the illustration purpose, we analyse a real dataset on heart-disease.  相似文献   

7.
A simulation experiment compares the accuracy and precision of three alternate estimation techniques for the parameters of the STARMA model. Maximum likelihood estimation, in most ways the "best" estimation procedure, involves a large amount of computational effort so that two approximate techniques, exact least squares and conditional maximum likelihood, are often proposed for series of moderate lengths. This simulation experiment compares the accuracy of these three estimation procedures for simulated series of various lengths, and discusses the appropriateness of the three procedures as a function of the length of the observed series.  相似文献   

8.
In this paper, we propose and develop a doubly restricted exponential dispersion model, i.e. a varying dispersion generalized linear model with two sets of restrictions, a set of linear restrictions for the mean response, and at the same time, for another set of linear restrictions for the dispersion of the distribution. This model would be useful to consider several situations where it is necessary to control/analyze drug-doses, active effects in factorial experiments, mean-variance relationships, among other situations. A penalized likelihood function is proposed and developed in order to achieve the restricted parameters and to develop the inferential results. Several special cases from the literature are commented on. A simply restricted varying dispersion beta regression model is exemplified by means of real and simulated data. Satisfactory and promising results are found.  相似文献   

9.
Abstract.  We consider the problem of estimating the modal value of a decreasing density on the positive real line. This has application in several interesting phenomena arising, for example, in renewal theory, and in biased and distance samplings. We use a penalized likelihood ratio-based approach for inference and derive the scale-free universal large sample null distribution of the log-likelihood ratio, using a suitably chosen penalty parameter. We present simulation results and a real data analysis to corroborate our findings, and compare the performance of the confidence sets with the existing results.  相似文献   

10.
Storage reliability that measures the ability of products in a dormant state to keep their required functions is studied in this paper. Unlike the operational reliability, storage reliability for certain types of products may not be always 100% at the beginning of storage since there are existing possible initial failures that are normally neglected in the models of storage reliability. In this paper, a new combinatorial approach, the nonparametric measure for the estimates of the number of failed products and the current reliability at each testing time in storage, and the parametric measure for the estimates of the initial reliability and the failure rate based on the exponential reliability function, is proposed for estimating and predicting the storage reliability with possible initial failures. The proposed method has taken into consideration that the initial failure and the reliability testing data, before and during the storage process, are available for providing more accurate estimates of both initial failure probability and the probability of storage failures. When storage reliability prediction that is the main concern in this field should be made, the nonparametric estimates of failure numbers can be used into the parametric models for the failure process in storage. In the case of exponential models, the assessment and prediction method for storage reliability is provided in this paper. Finally, numerical examples are given to illustrate the method. Furthermore, a detailed comparison between the proposed method and the traditional method, for examining the rationality of assessment and prediction on the storage reliability, is presented. The results should be useful for planning a storage environment, decision-making concerning the maximum length of storage, and identifying the production quality.  相似文献   

11.
Two-parameter Gompertz distribution has been introduced as a lifetime model for reliability inference recently. In this paper, the Gompertz distribution is proposed for the baseline lifetimes of components in a composite system. In this composite system, failure of a component induces increased load on the surviving components and thus increases component hazard rate via a power-trend process. Point estimates of the composite system parameters are obtained by the method of maximum likelihood. Interval estimates of the baseline survival function are obtained by using the maximum-likelihood estimator via a bootstrap percentile method. Two parametric bootstrap procedures are proposed to test whether the hazard rate function changes with the number of failed components. Intensive simulations are carried out to evaluate the performance of the proposed estimation procedure.  相似文献   

12.
Abstract.  In finite mixtures of location–scale distributions, if there is no constraint or penalty on the parameters, then the maximum likelihood estimator does not exist because the likelihood is unbounded. To avoid this problem, we consider a penalized likelihood, where the penalty is a function of the minimum of the ratios of the scale parameters and the sample size. It is shown that the penalized maximum likelihood estimator is strongly consistent. We also analyse the consistency of a penalized maximum likelihood estimator where the penalty is imposed on the scale parameters themselves.  相似文献   

13.
14.
In a series of papers, J. Garrido and Y. Lu have proposed and investigated a doubly periodic Poisson model, and then applied it to analyze hurricane data. The authors have suggested several parametric models for the underlying intensity function. In the present paper we construct and analyze a non-parametric estimator for the doubly periodic intensity function. Assuming that only a single realization of the process is available in a bounded window, we show that the estimator is consistent and asymptotically normal when the window expands indefinitely. In addition, we calculate the asymptotic bias and variance of the estimator, and in this way gain helpful information for optimizing the performance of the estimator.  相似文献   

15.
A method based on the principle of unbiased risk estimation is used to select the splined variables in an exploratory partial spline model proposed by Wahba (1985). The probability of correct selection based on the proposed procedure is discussed under regularity conditions. Furthermore, the resulting estimate of the regression function achieves the optimal rates of convergence over a general class of smooth regression functions (Stone 1982) when its underlying smoothness condition is not known.  相似文献   

16.
In this paper a model is proposed which represents a wide class of continuous distributions. It is shown how the parameters of this model can be estimated leading to a distribution estimator and a corresponding density estimator. An important property of this estimator is that it can be structured to reflect a priori knowledge of the unknown distribution.

Finally, some examples are shown and some comparisons made with kernel and orthogonal series estimators.  相似文献   

17.
A new method has been proposed to introduce an extra parameter to a family of distributions for more flexibility. A special case has been considered in detail, namely one-parameter exponential distribution. Various properties of the proposed distribution, including explicit expressions for the moments, quantiles, mode, moment-generating function, mean residual lifetime, stochastic orders, order statistics, and expression of the entropies, are derived. The maximum likelihood estimators of unknown parameters cannot be obtained in explicit forms, and they have to be obtained by solving non linear equations only. Further, we consider an extension of the two-parameter exponential distribution also, mainly for data analysis purposes. Two datasets have been analyzed to show how the proposed models work in practice.  相似文献   

18.
A semi-parametric additive model for variance heterogeneity   总被引:1,自引:0,他引:1  
This paper presents a flexible model for variance heterogeneity in a normal error model. Specifically, both the mean and variance are modelled using semi-parametric additive models. We call this model a Mean And Dispersion Additive Model (MADAM). A successive relaxation algorithm for fitting the model is described and justified as maximizing a penalized likelihood function with penalties for lack of smoothness in the additive non-parametric functions in both mean and variance models. The algorithm is implemented in GLIM4, allowing flexible and interactive modelling of variance heterogeneity. Two data sets are used for demonstration.  相似文献   

19.
The step-stress model is a special case of accelerated life testing that allows for testing of units under different levels of stress with changes occurring at various intermediate stages of the experiment. Interest then lies on inference for the mean lifetime at each stress level. All step-stress models discussed so far in the literature are based on a single experiment. For the situation when data have been collected from different experiments wherein all the test units had been exposed to the same levels of stress but with possibly different points of change of stress, we introduce a model that combines the different experiments and facilitates a meta-analysis for the estimation of the mean lifetimes. We then discuss in detail the likelihood inference for the case of simple step-stress experiments under exponentially distributed lifetimes with Type-II censoring.  相似文献   

20.
In varying-coefficient models, an important question is to determine whether some of the varying coefficients are actually invariant coefficients. This article proposes a penalized likelihood method in the framework of the smoothing spline ANOVA models, with a penalty designed toward the goal of automatically distinguishing varying coefficients and those which are not varying. Unlike the stepwise procedure, the method simultaneously quantifies and estimates the coefficients. An efficient algorithm is given and ways of choosing the smoothing parameters are discussed. Simulation results and an analysis on the Boston housing data illustrate the usefulness of the method. The proposed approach is further extended to longitudinal data analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号