首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The explicit forms of the minimum variance quadratic unbiased estimators (MIVQUEs) of the variance components are given for simple linear regression with onefold nested error. The resulting estimators are more efficient as the ratio of the initial variance components estimates increases and are asymptotically efficient as the ratio tends to infinity.  相似文献   

2.
Staggered nested experimental designs are the most popular class of unbalanced nested designs. Using a special notation which covers the particular structure of the staggered nested design, this paper systematically derives the canonical form for the arbitrary m-factors. Under the normality assumption for every random variable, a vector comprising m canonical variables from each experimental unit is normally independently and identically distributed. Every sum of squares used in the analysis of variance (ANOVA) can be expressed as the sum of squares of the corresponding canonical variables. Hence, general formulae for the expectations, variances and covariances of the mean squares are directly obtained from the canonical form. Applying the formulae, the explicit forms of the ANOVA estimators of the variance components and unbiased estimators of the ratios of the variance components are introduced in this paper. The formulae are easily applied to obtain the variances and covariances of any linear combinations of the mean squares, especially the ANOVA estimators of the variance components. These results are eff ectively applied for the standardization of measurement methods.  相似文献   

3.
Probabilistic matching of records is widely used to create linked data sets for use in health science, epidemiological, economic, demographic and sociological research. Clearly, this type of matching can lead to linkage errors, which in turn can lead to bias and increased variability when standard statistical estimation techniques are used with the linked data. In this paper we develop unbiased regression parameter estimates to be used when fitting a linear model with nested errors to probabilistically linked data. Since estimation of variance components is typically an important objective when fitting such a model, we also develop appropriate modifications to standard methods of variance components estimation in order to account for linkage error. In particular, we focus on three widely used methods of variance components estimation: analysis of variance, maximum likelihood and restricted maximum likelihood. Simulation results show that our estimators perform reasonably well when compared to standard estimation methods that ignore linkage errors.  相似文献   

4.
For nonparametric regression models with fixed and random design, two classes of estimators for the error variance have been introduced: second sample moments based on residuals from a nonparametric fit, and difference-based estimators. The former are asymptotically optimal but require estimating the regression function; the latter are simple but have larger asymptotic variance. For nonparametric regression models with random covariates, we introduce a class of estimators for the error variance that are related to difference-based estimators: covariate-matched U-statistics. We give conditions on the random weights involved that lead to asymptotically optimal estimators of the error variance. Our explicit construction of the weights uses a kernel estimator for the covariate density.  相似文献   

5.
Usual fitting methods for the nested error linear regression model are known to be very sensitive to the effect of even a single outlier. Robust approaches for the unbalanced nested error model with proved robustness and efficiency properties, such as M-estimators, are typically obtained through iterative algorithms. These algorithms are often computationally intensive and require robust estimates of the same parameters to start the algorithms, but so far no robust starting values have been proposed for this model. This paper proposes computationally fast robust estimators for the variance components under an unbalanced nested error model, based on a simple robustification of the fitting-of-constants method or Henderson method III. These estimators can be used as starting values for other iterative methods. Our simulations show that they are highly robust to various types of contamination of different magnitude.  相似文献   

6.
Lognormal regression model with unknown error variance is considered. We give a class of estimators of the regression coefficients vector improving upon traditional estimator when the number of independent variables is at least three. The relationship between these estimators on one hand and James-Stein type estimators of the normal mean and improved estimators of the normal variance on another hand is discussed.  相似文献   

7.
Staggered nested experimental designs are the most popular class of unbalanced nested designs in practical fields. The most important features of the staggered nested design are that it has a very simple open-ended structure and each sum of squares in the analysis of variance has almost the same degrees of freedom. Based on the features, a class of unbalanced nested designs that is a generalization of the staggered nested design is proposed in this paper. Formulae for the estimation of variance components and their sums are provided. Comparing the variances of the estimators to the staggered nested designs, it is found that some of the generalized staggered nested designs are more efficient than the traditional staggered nested design in estimating some of the variance components and their sums. An example is provided for illustration.  相似文献   

8.
The three key elements of experimental design are randomization, replication, and variance identification and control. Capture-recapture experiments usually pay sufficient attention to the first two elements, but often do not pay sufficient attention to sources of variation. These include blocking factors and different sizes of experimental units. By casting capture-recapture studies in an experimental design framework, the various roles of these sources of variation become clear and the sources that are pooled when these experiments are analysed using existing software is also clear. This formulation also shows that care must be taken with pseudo-replication and different sized experimental units.  相似文献   

9.
Non-iterative, distribution-free, and unbiased estimators of variance components by least squares method are derived for multivariate linear mixed model. A general inter-cluster variance matrix, a same-member only general inter-response variance matrix, and an uncorrelated intra-cluster error structure for each response are assumed. Projection method is suggested when unbiased estimators of variance components are not nonnegative definite matrices. A simulation study is conducted to investigate the properties of the proposed estimators in terms of bias and mean square error with comparison to the Gaussian (restricted) maximum likelihood estimators. The proposed estimators are illustrated by an application of gene expression familial study.  相似文献   

10.
We consider the estimation of error variance and construct a class of estimators improving upon the usual estimators uniformly under entropy loss or under squared error loss. Through a Monte Carlo simulation study, the magnitude of the risk reduction of our improved estimator as compared with the usual one is examined in a context of a nested linear hypothesis testing of a linear regression model, where substantial risk reduction can be attained. We also construct a class of confidence intervals having larger coverage probabilities and not larger interval lengths than those of the usual ones. This allows us to construct a class of estimators universally dominating the usual ones. Further, we consider the estimation of order-restricted normal variances. We give a class of isotonic regression estimators improving upon the usual ones under various types of order restrictions. We also give a class of improved confidence intervals over the usual ones, and a class of estimators universally dominating the usual ones.  相似文献   

11.
In this paper, the convergence rates of the EB estimators of the regression coefficients and the error variance in a linear model are obtained. The rates can approximate to O(n1) arbitrarily. The convergency of the EB estimators of the regression coefiicients and the variance components in a variance component model is also investigated. The investigation makes use of the results concerning the convergence rates of the EB estimators of the parameters in multi-parameter exponential families.  相似文献   

12.
We consider two estimation schemes based on penalized quasilikelihood and quasi-pseudo-likelihood in Poisson mixed models. The asymptotic bias in regression coefficients and variance components estimated by penalized quasilikelihood (PQL) is studied for small values of the variance components. We show the PQL estimators of both regression coefficients and variance components in Poisson mixed models have a smaller order of bias compared to those for binomial data. Unbiased estimating equations based on quasi-pseudo-likelihood are proposed and are shown to yield consistent estimators under some regularity conditions. The finite sample performance of these two methods is compared through a simulation study.  相似文献   

13.
Many split-plot×split-block (SPSB) type experiments used in agriculture, biochemistry or plant protection are designed to study new crop plant cultivars or chemical agents. In these experiments it is usually very important to compare test treatments with the so-called control treatments. It happens yet that experimental material is limited and it does not allow using a complete (orthogonal) SPSB design. In the paper we propose a non-orthogonal SPSB design for consideration. Two cases of the design are presented here, i.e. when its incompleteness is connected with a crossed treatment structure only or with a nested treatment structure only. It is assumed the factors' levels connected with the incompleteness of the design are split into two groups: a set of test treatments and a set of control treatments. The method of constructions involves applying augmented block designs for some factors' levels. In a modelling data obtained from such experiments the structure of experimental material and appropriate randomization scheme of the different kinds of units before they enter the experiment are taken into account. With respect to the analysis of the obtained randomization model the approach typical to the multistratum experiments with orthogonal block structure is adapted. The proposed statistical analysis of linear model obtained includes estimation of parameters, testing general and particular hypotheses defined by the (basic) treatment contrasts with special reference to the notion of general balance.  相似文献   

14.
We study confidence intervals based on hard-thresholding, soft-thresholding, and adaptive soft-thresholding in a linear regression model where the number of regressors k may depend on and diverge with sample size n. In addition to the case of known error variance, we define and study versions of the estimators when the error variance is unknown. In the known-variance case, we provide an exact analysis of the coverage properties of such intervals in finite samples. We show that these intervals are always larger than the standard interval based on the least-squares estimator. Asymptotically, the intervals based on the thresholding estimators are larger even by an order of magnitude when the estimators are tuned to perform consistent variable selection. For the unknown-variance case, we provide nontrivial lower bounds and a small numerical study for the coverage probabilities in finite samples. We also conduct an asymptotic analysis where the results from the known-variance case can be shown to carry over asymptotically if the number of degrees of freedom n ? k tends to infinity fast enough in relation to the thresholding parameter.  相似文献   

15.
We explore a class of vector smoothers based on local polynomial regression for fitting nonparametric regression models which have a vector response. The asymptotic bias and variance for the class of estimators are derived for two different ways of representing the variance matrices within both a seemingly unrelated regression and a vector measurement error framework. We show that the asymptotic behaviour of the estimators is different in these four cases. In addition, the placement of the kernel weights in weighted least squares estimators is very important in the seeming unrelated regressions problem (to ensure that the estimator is asymptotically unbiased) but not in the vector measurement error model. It is shown that the component estimators are asymptotically uncorrelated in the seemingly unrelated regressions model but asymptotically correlated in the vector measurement error model. These new and interesting results extend our understanding of the problem of smoothing dependent data.  相似文献   

16.
Estimation of covariance components in the multivariate random-effect model with nested covariance structure is discussed. There are two covariance matrices to be estimated, namely, the between-group and the within-group covariance matrices. These two covariance matrices are most often estimated by forming a multivariate analysis of variance and equating mean square matrices to their expectations. Such a procedure involves taking the difference between the between-group mean square and the within-group mean square matrices, and often produces an estimated between-group covariance matrix that is not nonnegative definite. We present estimators of the two covariance matrices that are always proper covariance matrices. The estimators are the restricted maximum likelihood estimators if the random effects are normally distributed. The estimation procedure is extended to more complicated models, including the twofold nested and the mixed-effect models. A numerical example is presented to illustrate the use of the estimation procedure.  相似文献   

17.
This paper considers estimation of β in the regression model y =+μ, where the error components in μ have the jointly multivariate Student-t distribution. A family of James-Stein type estimators (characterised by nonstochastic scalars) is presented. Sufficient conditions involving only X are given, under which these estimators are better (with respect to the risk under a general quadratic loss function) than the usual minimum variance unbiased estimator (MVUE) of β. Approximate expressions for the bias, the risk, the mean square error matrix and the variance-covariance matrix for the estimators in this family are obtained. A necessary and sufficient condition for the dominance of this family over MVUE is also given.  相似文献   

18.
In this paper, we consider James–Stein shrinkage and pretest estimation methods for time series following generalized linear models when it is conjectured that some of the regression parameters may be restricted to a subspace. Efficient estimation strategies are developed when there are many covariates in the model and some of them are not statistically significant. Statistical properties of the pretest and shrinkage estimation methods including asymptotic distributional bias and risk are developed. We investigate the relative performances of shrinkage and pretest estimators with respect to the unrestricted maximum partial likelihood estimator (MPLE). We show that the shrinkage estimators have a lower relative mean squared error as compared to the unrestricted MPLE when the number of significant covariates exceeds two. Monte Carlo simulation experiments were conducted for different combinations of inactive covariates and the performance of each estimator was evaluated in terms of its mean squared error. The practical benefits of the proposed methods are illustrated using two real data sets.  相似文献   

19.
The goal of achieving high quality products has led to an emphasis on reducing variation in performance characteristics. It may often happen that one of the product's components is responsible for much of the observed variation. This research is stimulated by the problem of detecting a component that impairs quality by systematically inflating the variance in a product that is assembled from “interchangeable components.” We consider the class of “disassembly-reassembly” experiments, in which components are swapped among assemblies. The specific units used in the experiment are sampled from a large population of units, so it is natural to measure the influence of each factor by its variance component. We present the model for these experiments as a special case of the mixed linear model, compare several estimators for the variance components and consider the problem of testing hypotheses to identify troublesome components.  相似文献   

20.
Estimation of the population mean under the regression model with random components is considered. Conditions under which the random components regression estimator is design consistent are given. It is shown that consistency holds when incorrect values are used for the variance components. The regression estimator constructed with model parameters that differ considerably from the true parameters performed well in a Monte Carlo study. Variance estimators for the regression predictor are suggested. A variance estimator appropriate for estimators constructed with a biased estimator for the between-group variance component performed well in the Monte Carlo study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号