首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Including time-varying covariates is a popular extension to the Cox model and a suitable approach for dealing with non-proportional hazards. However, partial likelihood (PL) estimation of this model has three shortcomings: (i) estimated regression coefficients can be less accurate in small samples with heavy censoring; (ii) the baseline hazard is not directly estimated and (iii) a covariance matrix for both the regression coefficients and the baseline hazard is not easily produced.We address these by developing a maximum likelihood (ML) approach to jointly estimate regression coefficients and baseline hazard using a constrained optimisation ensuring the latter''s non-negativity. We demonstrate asymptotic properties of these estimates and show via simulation their increased accuracy compared to PL estimates in small samples and show our method produces smoother baseline hazard estimates than the Breslow estimator.Finally, we apply our method to two examples, including an important real-world financial example to estimate time to default for retail home loans. We demonstrate using our ML estimate for the baseline hazard can give much clearer corroboratory evidence of the ‘humped hazard’, whereby the risk of loan default rises to a peak and then later falls.  相似文献   

2.
This paper addresses the problem of obtaining maximum likelihood estimates for the parameters of the Pearson Type I distribution (beta distribution with unknown end points and shape parameters). Since they do not seem to have appeared in the literature, the likelihood equations and the information matrix are derived. The regularity conditions which ensure asymptotic normality and efficiency are examined, and some apparent conflicts in the literature are noted. To ensure regularity, the shape parameters must be greater than two, giving an (assymmetrical) bell-shaped distribution with high contact in the tails. A numerical investigation was carried out to explore the bias and variance of the maximum likelihood estimates and their dependence on sample size. The numerical study indicated that only for large samples (n ≥ 1000) does the bias in the estimates become small and does the Cramér-Rao bound give a good approximation for their variance. The likelihood function has a global maximum which corresponds to parameter estimates that are inadmissable. Useful parameter estimates can be obtained at a local maximum, which is sometimes difficult to locate when the sample size is small.  相似文献   

3.
In this paper, we consider the problem of estimation of semi-linear regression models. Using invariance arguments, Bhowmik and King [2007. Maximal invariant likelihood based testing of semi-linear models. Statist. Papers 48, 357–383] derived the probability density function of the maximal invariant statistic for the non-linear component of these models. Using this density function as a likelihood function allows us to estimate these models in a two-step process. First the non-linear component parameters are estimated by maximising the maximal invariant likelihood function. Then the non-linear component, with the parameter values replaced by estimates, is treated as a regressor and ordinary least squares is used to estimate the remaining parameters. We report the results of a simulation study conducted to compare the accuracy of this approach with full maximum likelihood and maximum profile-marginal likelihood estimation. We find maximising the maximal invariant likelihood function typically results in less biased and lower variance estimates than those from full maximum likelihood.  相似文献   

4.
In this paper, the method of Hocking and Oxspring (1971) to estimate multinomial probabilities when full and partial data are available for some cells is extended to estimate the cell probabilities of a contingency table with structural zeros. The estimates are maximum likelihood, and the process is sequential. The gain in precision is due to the use of partial data and the bias of the estimates is also investigated.  相似文献   

5.
We compare minimum Hellinger distance and minimum Heiiinger disparity estimates for U-shaped beta distributions. Given suitable density estimates, both methods are known to be asymptotically efficient when the data come from the assumed model family, and robust to small perturbations from the model family. Most implementations use kernel density estimates, which may not be appropriate for U-shaped distributions. We compare fixed binwidth histograms, percentile mesh histograms, and averaged shifted histograms. Minimum disparity estimates are less sensitive to the choice of density estimate than are minimum distance estimates, and the percentile mesh histogram gives the best results for both minimum distance and minimum disparity estimates. Minimum distance estimates are biased and a bias-corrected method is proposed. Minimum disparity estimates and bias-corrected minimum distance estimates are comparable to maximum likelihood estimates when the model holds, and give better results than either method of moments or maximum likelihood when the data are discretized or contaminated, Although our re¬sults are for the beta density, the implementations are easily modified for other U-shaped distributions such as the Dirkhlet or normal generated distribution.  相似文献   

6.
PITMAN NEARNESS COMPARISONS OF ESTIMATES OF TWO ORDERED NORMAL MEANS   总被引:1,自引:0,他引:1  
Maximum likelihood estimates of ordered means of two normal distributions having common variance have been shown to be better than the usual maximum likelihood estimates (i.e. corresponding sample means) with respect to Pitman Nearness criterion. The maximum likelihood estimate of common variance taking into consideration the order restriction of the means is shown to have smaller mean square error than the unrestricted maximum likelihood estimate of the common variance. These two estimators have also been compared with respect to Pitman Nearness criterion.  相似文献   

7.
This paper discusses issues related to the improvement of maximum likelihood estimates in von Mises regression models. It obtains general matrix expressions for the second-order biases of maximum likelihood estimates of the mean parameters and concentration parameters. The formulae are simple to compute, and give the biases by means of weighted linear regressions. Simulation results are presented assessing the performance of corrected maximum likelihood estimates in these models.  相似文献   

8.
The estimation of the parameter of a mixed model analysis of variance by maximum likelihood methods is discussed. The functional iteration method is studied and found to have good comptuational properties. The estimates are studied via Monte Carlo techniques and their small sample properties are observed; it is found that the MLE's may be biased but that they have good Mean Square Error properties.  相似文献   

9.
The generalized maximum likelihood estimate (GMLE) assumptions are studied for four product-limit estimates (PLE): Censoring PLE (Kaplan-Meier estimate), truncation PLE, censoring-truncation PLE, and the degenerated PLE - the empirical distribution function. This paper shows that all the PLE's are also the GMLE's even if they are derived from partial likelihoods by natural parameterization techniques. However, a counter example is given to show that Kiefer Wolfowitz's assumption (1956) for consistency of GMLE can hardly be satisfied for un-dominated case.  相似文献   

10.
This paper proposes an overlapping-based test statistic for testing the equality of two exponential distributions with different scale and location parameters. The test statistic is defined as the maximum likelihood estimate of the Weitzman's overlapping coefficient, which estimates the agreement of two densities. The proposed test statistic is derived in closed form. Simulated critical points are generated for the proposed test statistic for various sample sizes and significance levels via Monte Carlo Simulations. Statistical powers of the proposed test are computed via simulation studies and compared to those of the existing Log likelihood ratio test.  相似文献   

11.
We propose Bayesian methods with five types of priors to estimate cell probabilities in an incomplete multi-way contingency table under nonignorable nonresponse. In this situation, the maximum likelihood (ML) estimates often fall in the boundary solution, causing the ML estimates to become unstable. To deal with such a multi-way table, we present an EM algorithm which generalizes the previous algorithm used for incomplete one-way tables. Three of the five types of priors were previously introduced while the other two are newly proposed to reflect different response patterns between respondents and nonrespondents. Data analysis and simulation studies show that Bayesian estimates based on the old three priors can be worse than the ML regardless of occurrence of boundary solution, contrary to previous studies. The Bayesian estimates from the two new priors are most preferable when a boundary solution occurs. We provide an illustrating example using data for a study of the relationship between a mother's smoking and her newborn's weight.  相似文献   

12.
The two-part model and Heckman's sample selection model are often used in economic studies which involve analyzing the demand for limited variables. This study proposed a simultaneous equation model (SEM) and used the expectation-maximization algorithm to obtain the maximum likelihood estimate. We then constructed a simulation to compare the performance of estimates of price elasticity using SEM with those estimates from the two-part model and the sample selection model. The simulation shows that the estimates of price elasticity by SEM are more precise than those by the sample selection model and the two-part model when the model includes limited independent variables. Finally, we analyzed a real example of cigarette consumption as an application. We found an increase in cigarette price associated with a decrease in both the propensity to consume cigarettes and the amount actually consumed.  相似文献   

13.
We use logistic model to get point and interval estimates of the marginal risk difference in observational studies and randomized trials with dichotomous outcome. We prove that the maximum likelihood estimate of the marginal risk difference is unbiased for finite sample and highly robust to the effects of dispersing covariates. We use approximate normal distribution of the maximum likelihood estimates of the logistic model parameters to get approximate distribution of the maximum likelihood estimate of the marginal risk difference and then the interval estimate of the marginal risk difference. We illustrate application of the method by a real medical example.  相似文献   

14.
Investigators often gather longitudinal data to assess changes in responses over time within subjects and to relate these changes to within‐subject changes in predictors. Missing data are common in such studies and predictors can be correlated with subject‐specific effects. Maximum likelihood methods for generalized linear mixed models provide consistent estimates when the data are ‘missing at random’ (MAR) but can produce inconsistent estimates in settings where the random effects are correlated with one of the predictors. On the other hand, conditional maximum likelihood methods (and closely related maximum likelihood methods that partition covariates into between‐ and within‐cluster components) provide consistent estimation when random effects are correlated with predictors but can produce inconsistent covariate effect estimates when data are MAR. Using theory, simulation studies, and fits to example data this paper shows that decomposition methods using complete covariate information produce consistent estimates. In some practical cases these methods, that ostensibly require complete covariate information, actually only involve the observed covariates. These results offer an easy‐to‐use approach to simultaneously protect against bias from both cluster‐level confounding and MAR missingness in assessments of change.  相似文献   

15.
The aim of this paper is to compare the parameters' estimations of the Marshall–Olkin extended Lindley distribution obtained by six estimation methods: maximum likelihood, ordinary least-squares, weighted least-squares, maximum product of spacings, Cramér–von Mises and Anderson–Darling. The bias, root mean-squared error, average absolute difference between the true and estimate distributions' functions and the maximum absolute difference between the true and estimate distributions' functions are used as comparison criteria. Although the maximum product of spacings method is not widely used, the simulation study concludes that it is highly competitive with the maximum likelihood method.  相似文献   

16.
We define a parametric proportional odds frailty model to describe lifetime data incorporating heterogeneity between individuals. An unobserved individual random effect, called frailty, acts multiplicatively on the odds of failure by time t. We investigate fitting by maximum likelihood and by least squares. For the latter, the parametric survivor function is fitted to the nonparametric Kaplan–Meier estimate at the observed failure times. Bootstrap standard errors and confidence intervals are obtained for the least squares estimates. The models are applied successfully to simulated data and to two real data sets. Least squares estimates appear to have smaller bias than maximum likelihood.  相似文献   

17.
A correlated probit model approximation for conditional probabilities (Mendell and Elston 1974) is used to estimate the variance for binary matched pairs data by maximum likelihood. Using asymptotic data, the bias of the estimates is shown to be small for a wide range of intra-class correlations and incidences. This approximation is also compared with other recently published, or implemented, improved approximations. For the small sample examples presented, it shows a substantial advantage over other approximations. The method is extended to allow covariates for each observation, and fitting by iteratively reweighted least squares.  相似文献   

18.
Maximum likelihood estimation and goodness-of-fit techniques are used within a competing risks framework to obtain maximum likelihood estimates of hazard, density, and survivor functions for randomly right-censored variables. Goodness-of- fit techniques are used to fit distributions to the crude lifetimes, which are used to obtain an estimate of the hazard function, which, in turn, is used to construct the survivor and density functions of the net lifetime of the variable of interest. If only one of the crude lifetimes can be adequately characterized by a parametric model, then semi-parametric estimates may be obtained using a maximum likelihood estimate of one crude lifetime and the empirical distribution function of the other. Simulation studies show that the survivor function estimates from crude lifetimes compare favourably with those given by the product-limit estimator when crude lifetimes are chosen correctly. Other advantages are discussed.  相似文献   

19.
New recursive algorithms for fast computation of the normalizing constant for the autologistic model on the lattice make feasible a sample-based maximum likelihood estimation (MLE) of the autologistic parameters. We demonstrate by sampling from 12 simulated 420×420 binary lattices with square lattice plots of size 4×4, …, 7×7 and sample sizes between 20 and 600. Sample-based results are compared with ‘benchmark’ MCMC estimates derived from all binary observations on a lattice. Sample-based estimates are, on average, biased systematically by 3%–7%, a bias that can be reduced by more than half by a set of calibrating equations. MLE estimates of sampling variances are large and usually conservative. The variance of the parameter of spatial association is about 2–10 times higher than the variance of the parameter of abundance. Sample distributions of estimates were mostly non-normal. We conclude that sample-based MLE estimation of the autologistic parameters with an appropriate sample size and post-estimation calibration will furnish fully acceptable estimates. Equations for predicting the expected sampling variance are given.  相似文献   

20.
It is known that the maximum likelihood methods does not provide explicit estimators for the mean and standard deviation of the normal distribution based on Type II censored samples. In this paper we present a simple method of deriving explicit estimators by approximating the likelihood equations appropriately. We obtain the variances and covariance of these estimators. We also show that these estimators are almost as eficient as the maximum likelihood (ML) estimators and just as eficient as the best linear unbiased (BLU), and the modified maximum likelihood (MML) estimators. Finally, we illustrate this method of estimation by applying it to Gupta's and Darwin's data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号