首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Methods for estimating the mixing parameters in a mixture of two exponential distributions are proposed. The estimators proposed are consistent and BAN(best asymptotically normal). The optimal spacings for estimating these mixture parameters are calculated.  相似文献   

2.
Posterior distributions and moment are derived for the generalized Poisson and the excess zeroes Poisson distributions.Three examples are presented where both maximum likelihood and posterior estimates are given.  相似文献   

3.
4.
In this paper, we propose a three level hierarchical Bayesian model for variable selection and estimation in quantile regression problems. Specifically, at the first level we consider a zero mean normal priors for the coefficients with unknown variance parameters. At the second level, we specify two different priors for the unknown variance parameters which introduce two different models producing different levels of sparsity. Then, at the third level we suggest joint improper priors for the unknown hyperparameters assuming they are independent. Simulations and Boston Housing data are utilized to compare the performance of our models with six existing models. The results indicate that our models perform good in the simulations and Boston Housing data.  相似文献   

5.
Grouped data are frequently used in several fields of study. In this work, we use the expectation-maximization (EM) algorithm for fitting the skew-normal (SN) mixture model to the grouped data. Implementing the EM algorithm requires computing the one-dimensional integrals for each group or class. Our simulation study and real data analyses reveal that the EM algorithm not only always converges but also can be implemented in just a few seconds even when the number of components is large, contrary to the Bayesian paradigm that is computationally expensive. The accuracy of the EM algorithm and superiority of the SN mixture model over the traditional normal mixture model in modelling grouped data are demonstrated through the simulation and three real data illustrations. For implementing the EM algorithm, we use the package called ForestFit developed for R environment available at https://cran.r-project.org/web/packages/ForestFit/index.html.  相似文献   

6.
In this article, we propose mixtures of skew Laplace normal (SLN) distributions to model both skewness and heavy-tailedness in the neous data set as an alternative to mixtures of skew Student-t-normal (STN) distributions. We give the expectation–maximization (EM) algorithm to obtain the maximum likelihood (ML) estimators for the parameters of interest. We also analyze the mixture regression model based on the SLN distribution and provide the ML estimators of the parameters using the EM algorithm. The performance of the proposed mixture model is illustrated by a simulation study and two real data examples.  相似文献   

7.
In this paper, the mixture model of k extreme value distributions is investigated. Using the Laplace transform of extreme value distributions given in terms of the Krätzel function, we first prove the identifiability of the class of arbitrary mixtures of extreme-value distributions of type 1 and type 2. We then find the estimates for the parameters of the mixture of two extreme-value distributions, including the three different types, via the EM algorithm. The performance of the estimates is tested by Monte Carlo simulation.  相似文献   

8.
Several two component mixture models from the transformed gamma and transformed beta families are developed to assess risk performance. Their common statistical properties are given and applications to real insurance loss data are shown. A new data trimming approach for parameter estimation is proposed using the maximum likelihood estimation method. Assessment with respect to Value-at-Risk and Conditional Tail Expectation risk measures are presented. Of all the models examined, the mixture of inverse transformed gamma-Burr distributions consistently provides good results in terms of goodness-of-fit and risk estimation in the context of the Danish fire loss data.  相似文献   

9.
In this article, we propose an efficient and robust estimation for the semiparametric mixture model that is a mixture of unknown location-shifted symmetric distributions. Our estimation is derived by minimizing the profile Hellinger distance (MPHD) between the model and a nonparametric density estimate. We propose a simple and efficient algorithm to find the proposed MPHD estimation. Monte Carlo simulation study is conducted to examine the finite sample performance of the proposed procedure and to compare it with other existing methods. Based on our empirical studies, the newly proposed procedure works very competitively compared to the existing methods for normal component cases and much better for non-normal component cases. More importantly, the proposed procedure is robust when the data are contaminated with outlying observations. A real data application is also provided to illustrate the proposed estimation procedure.  相似文献   

10.
We oresent a criterion fnr the optimal aggreation of industries in input-output analysis, when the aggregation is wade prior to data collection. This criterion is based on a model assuming -hat the input-output coefficients are used in. some decision process, and that they are unknown (or random) prior to data collection. We show that our criterion, based on decision theoretic considerations, differs considerably from traditional criteria for good aggregation. Our model is also applide as an example, to the Netherlands economy.  相似文献   

11.
The modified likelihood ratio statistic can be used to test the homogeneity in a variety of mixture models. Here, the authors propose the use of the modified and the iterative modified likelihood ratio for testing homogeneity against a two‐component von Mises mixture with a structural parameter. They derive the limiting distributions of the test statistics and propose methods to improve the accuracy of the asymptotic approximation in finite samples. Their simulations show that the tests maintain their nominal level and that they have adequate power. Data on movements of turtles are used as an illustration  相似文献   

12.
This paper provides a brief structural perspective of discrete weighted distributions in theory and practice.. It develops a unified view of previous work involving univariate and bivariate models with some new results pertaining to mixtures, form-invariance and Bayesian inference  相似文献   

13.
The analysis of non-Gaussian time series by using state space models is considered from both classical and Bayesian perspectives. The treatment in both cases is based on simulation using importance sampling and antithetic variables; Markov chain Monte Carlo methods are not employed. Non-Gaussian disturbances for the state equation as well as for the observation equation are considered. Methods for estimating conditional and posterior means of functions of the state vector given the observations, and the mean-square errors of their estimates, are developed. These methods are extended to cover the estimation of conditional and posterior densities and distribution functions. The choice of importance sampling densities and antithetic variables is discussed. The techniques work well in practice and are computationally efficient. Their use is illustrated by applying them to a univariate discrete time series, a series with outliers and a volatility series.  相似文献   

14.
With reference to the problem of estimating the mixing proportions in a finite mixture distribution with known components, employing Dirichlet prior, closed form expressions for the posterior means and variances are obtained. To avoid the difficulties in computing the estimates, an approximation procedure is introduced. Numerical studies carried out for normal mixtures indicate the closeness of the approximations and their superiority over the maximum likelihood estimates at least in the case of small samples.  相似文献   

15.
Further properties of the nonparametric maximum-likelihood estimator of a mixing distribution are obtained by exploiting the properties of totally positive kernels. Sufficient conditions for uniqueness of the estimator are given. This result is more general, and the proof is substantially simpler, than given previously. When the component density has support on N points, it is shown that all identifiable mixing distributions have support on no more than N/2 points. Identifiable mixtures are shown to lie on the boundary of the mixture model space. The maximum-likelihood estimate is shown to be unique if the vector of observations lies outside this space.  相似文献   

16.
17.
The problems of estimating the reliability function and Pr{X1+...+Xk ≤ Y} are considered. The random variables X’s and Y are assumed to follow binomial and Poisson distributions. Classical estimators available in the literature are discussed and Bayes estimators are derived. In order to obtain the estimators of these parametric functions, the basic role is played by the estimators of factorial moments of the two distributions.  相似文献   

18.
This paper examines the relative performance of two commonly used clustering methods based on maximum likelihood in the context of classifying a sample of observations of unknown origin arising from two normal populations with a common covariance matrix. the associated properties of the two methods are compared by conducting a series of simulation experiments under both mixture and separate sampling schemes.  相似文献   

19.
The purpose of this paper is to discuss the interpretation of dispersion effects in un-replicated fractional factorials from a robust design perspective. We propose an interpretation of dispersion effects as manifested interactions between control factors and unobserved and uncontrolled factors, an interpretation shown to be useful in achieving robust designs. Further, we show the consequences this interpretation has on the identification of dispersion effects.  相似文献   

20.
The EM algorithm is the standard method for estimating the parameters in finite mixture models. Yang and Pan [25] proposed a generalized classification maximum likelihood procedure, called the fuzzy c-directions (FCD) clustering algorithm, for estimating the parameters in mixtures of von Mises distributions. Two main drawbacks of the EM algorithm are its slow convergence and the dependence of the solution on the initial value used. The choice of initial values is of great importance in the algorithm-based literature as it can heavily influence the speed of convergence of the algorithm and its ability to locate the global maximum. On the other hand, the algorithmic frameworks of EM and FCD are closely related. Therefore, the drawbacks of FCD are the same as those of the EM algorithm. To resolve these problems, this paper proposes another clustering algorithm, which can self-organize local optimal cluster numbers without using cluster validity functions. These numerical results clearly indicate that the proposed algorithm is superior in performance of EM and FCD algorithms. Finally, we apply the proposed algorithm to two real data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号