首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
ABSTRACT

This article considers the problem of choosing between two possible treatments which are each modeled with a Poisson distribution. Win-probabilities are defined as the probabilities that a single potential future observation from one of the treatments will be better than, or at least as good as, a potential future observation from the other treatment. Using historical data from the two treatments, it is shown how estimates and confidence intervals can be constructed for the win-probabilities. Extensions to situations with three or more treatments are also discussed. Some examples and illustrations are provided, and the relationship between this methodology and standard inference procedures on the Poisson parameters is discussed.  相似文献   

2.
Abstract

In the fields of internet financial transactions and reliability engineering, there could be more zero and one observations simultaneously. In this paper, considering that it is beyond the range where the conventional model can fit, zero-and-one-inflated geometric distribution regression model is proposed. Ingeniously introducing Pólya-Gamma latent variables in the Bayesian inference, posterior sampling with high-dimensional parameters is converted to latent variables sampling and posterior sampling with lower-dimensional parameters, respectively. Circumventing the need for Metropolis-Hastings sampling, the sample with higher sampling efficiency is obtained. A simulation study is conducted to assess the performance of the proposed estimation for various sample sizes. Finally, a doctoral dissertation data set is analyzed to illustrate the practicability of the proposed method, research shows that zero-and-one-inflated geometric distribution regression model using Pólya-Gamma latent variables can achieve better fitting results.  相似文献   

3.
Abstract

The Birnbaum–Saunders distribution was developed to describe fatigue failure lifetimes, however, the distribution has been shown to be applicable for a variety of situations that frequently occur in the engineering sciences. In general, the distribution can be used for situations that involve stochastic wear–out failure. The distribution does not have an exponential family structure, and it is often necessary to use simulation methods to study the properties of statistical inference procedures for this distribution. Two random number generators for the Birnbaum–Saunders distribution have appeared in the literature. The purpose of this article is to present and compare these two random number generators to determine which is more efficient. It is shown that one of these generators is a special case of the other and is simpler and more efficient to use.  相似文献   

4.
A test for equality of two normal means when the data consist of both paired and unpaired observations is proposed. The proposed test is compared with two other standard methods known in the literature with respect to the type I error rate and power using simulation results.  相似文献   

5.
ABSTRACT

In this paper, we propose a control chart to monitor the Weibull shape parameter where the observations are censored due to competing risks. We assume that the failure occurs due to two competing risks that are independent and follow Weibull distribution with different shape and scale parameters. The control charts are proposed to monitor one or both of the shape parameters of competing risk distributions and established based on the conditional expected values. The proposed control chart for both shape parameters is used in certain situations and allows to monitor both shape parameters in only one chart. The control limits depend on the sample size, number of failures due to each risk and the desired stable average run length (ARL). We also consider the estimation problem of the target parameters when the Phase I sample is incomplete. We assumed that some of the products that fail during the life testing have a cause of failure that is only known to belong to a certain subset of all possible failures. This case is known as masking. In the presence of masking, the expectation-maximization (EM) algorithm is proposed to estimate the parameters. For both cases, with and without masking, the behaviour of ARLs of charts is studied through the numerical methods. The influence of masking on the performance of proposed charts is also studied through a simulation study. An example illustrates the applicability of the proposed charts.  相似文献   

6.
ABSTRACT

The logistic distribution has a prominent role in the theory and practice of statistics. We introduce a new family of continuous distributions generated from a logistic random variable called the logistic-X family. Its density function can be symmetrical, left-skewed, right-skewed, and reversed-J shaped, and can have increasing, decreasing, bathtub, and upside-down bathtub hazard rates shaped. Further, it can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. We derive explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Bonferroni and Lorenz curves, Shannon entropy, and order statistics. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. We also investigate the properties of one special model, the logistic-Fréchet distribution, and illustrate its importance by means of two applications to real data sets.  相似文献   

7.
Abstract

This article presents a general method of inference of the parameters of a continuous distribution with two unknown parameters. Except in a few distributions such as the normal distribution, the classical approach fails in this context to provide accurate inferences with small samples.Therefore, by taking the generalized approach to inference (cf. Weerahandi, 1995 Weerahandi, S. (1995). Exact Statistical Methods for Data Analysis. New York: Springer Verlag. [Google Scholar]), in this article we present a general method of inference to tackle practically useful two-parameter distributions such as the gamma distribution as well as distributions of theoretical interest such as the two-parameter uniform distribution. The proposed methods are exact in the sense that they are based on exact probability statements and exact expected values. The advantage of taking the generalized approach over the classical approximate inferences is shown via simulation studies.

This article has the potential to motivate much needed further research in non normal regressions, multiparameter problems, and multivariate problems for which basically there are only large sample inferences available. The approach that we take should pave the way for researchers to solve a variety of non normal problems, including ANOVA and MANOVA problems, where even the Bayesian approach fails. In the context of testing of hypotheses, the proposed method provides a superior alternative to the classical generalized likelihood ratio method.  相似文献   

8.
ABSTRACT

Most statistical analyses use hypothesis tests or estimation about parameters to form inferential conclusions. I think this is noble, but misguided. The point of view expressed here is that observables are fundamental, and that the goal of statistical modeling should be to predict future observations, given the current data and other relevant information. Further, the prediction of future observables provides multiple advantages to practicing scientists, and to science in general. These include an interpretable numerical summary of a quantity of direct interest to current and future researchers, a calibrated prediction of what’s likely to happen in future experiments, a prediction that can be either “corroborated” or “refuted” through experimentation, and avoidance of inference about parameters; quantities that exists only as convenient indices of hypothetical distributions. Finally, the predictive probability of a future observable can be used as a standard for communicating the reliability of the current work, regardless of whether confirmatory experiments are conducted. Adoption of this paradigm would improve our rigor for scientific accuracy and reproducibility by shifting our focus from “finding differences” among hypothetical parameters to predicting observable events based on our current scientific understanding.  相似文献   

9.
Suppose in a distribution problem, the sample information W is split into two pieces W 1 and W 2, and the parameters involved are split into two sets, π containing the parameters of interest, and θ containing nuisance parameters. It is shown that, under certain conditions, the posterior distribution of π does not depend on the data W 2, which can thus be ignored. This also has consequences for the predictive distribution of future (or missing) observations. In fact, under similar conditions, the predictive distributions using W or just W 1 are identical.  相似文献   

10.
The two-parameter generalized exponential (GE) distribution was introduced by Gupta and Kundu [Gupta, R.D. and Kundu, D., 1999, Generalized exponential distribution. Australian and New Zealand Journal of Statistics, 41(2), 173–188.]. It was observed that the GE can be used in situations where a skewed distribution for a nonnegative random variable is needed. In this article, the Bayesian estimation and prediction for the GE distribution, using informative priors, have been considered. Importance sampling is used to estimate the parameters, as well as the reliability function, and the Gibbs and Metropolis samplers data sets are used to predict the behavior of further observations from the distribution. Two data sets are used to illustrate the Bayesian procedure.  相似文献   

11.
ABSTRACT

In the context of failure time data, over the long run, dependent observations that might be censored are commonly encountered in practice. The main objective of this paper is to make inference about the common marginal distribution of the failure times. To this end, one nonparametric estimator, namely, the Nelson-Aalen estimator is modified to incorporate the dependence among the observations. The modified estimator is the weighted moving average (WMA) version of the existing estimator used for independent data. It has been shown that the new version is better in the sense of minimizing the one-step ahead forecast errors. Also, the new estimator can be used as a crude measure for checking independence among observations.  相似文献   

12.
ABSTRACT

In this article, we define a new lifetime model called the Weibull–Dagum distribution. The proposed model is based on the Weibull–G class. It can also be defined by a simple transformation of the Weibull random variable. Its density function is very flexible and can be symmetrical, left-skewed, right-skewed, and reversed-J shaped. It has constant, increasing, decreasing, upside-down bathtub, bathtub, and reversed-J shaped hazard rate. Various structural properties are derived including explicit expressions for the quantile function, ordinary and incomplete moments, and probability weighted moments. We also provide explicit expressions for the Rényi and q-entropies. We derive the density function of the order statistics as a mixture of Dagum densities. We use maximum likelihood to estimate the model parameters and illustrate the potentiality of the new model by means of a simulation study and two applications to real data. In fact, the proposed model outperforms the beta-Dagum, McDonald–Dagum, and Dagum models in these applications.  相似文献   

13.
In this article, we introduce a new family of asymmetric distributions, which depends on two parameters namely, α and β, and in the special case where β = 0, the skew-normal (SN) distribution considered by Azzallini [Azzalini, A., 1985, A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12, 171–178.] is obtained. Basic properties such as a stochastic representation and the derivation of maximum likelihood and moment estimators are studied. The asymptotic behaviour of both types of estimators is also investigated. Results of a small-scale simulation study is provided illustrating the usefulness of the new model. An application to a real data set is reported showing that it can present better fit than the SN distribution.  相似文献   

14.
ABSTRACT

The generalized extreme value distribution and its particular case, the Gumbel extreme value distribution, are widely applied for extreme value analysis. The Gumbel distribution has certain drawbacks because it is a non-heavy-tailed distribution and is characterized by constant skewness and kurtosis. The generalized extreme value distribution is frequently used in this context because it encompasses the three possible limiting distributions for a normalized maximum of infinite samples of independent and identically distributed observations. However, the generalized extreme value distribution might not be a suitable model when each observed maximum does not come from a large number of observations. Hence, other forms of generalizations of the Gumbel distribution might be preferable. Our goal is to collect in the present literature the distributions that contain the Gumbel distribution embedded in them and to identify those that have flexible skewness and kurtosis, are heavy-tailed and could be competitive with the generalized extreme value distribution. The generalizations of the Gumbel distribution are described and compared using an application to a wind speed data set and Monte Carlo simulations. We show that some distributions suffer from overparameterization and coincide with other generalized Gumbel distributions with a smaller number of parameters, that is, are non-identifiable. Our study suggests that the generalized extreme value distribution and a mixture of two extreme value distributions should be considered in practical applications.  相似文献   

15.
For any continuous baseline G distribution, Zografos and Balakrishnan [On families of beta- and generalized gamma-generated distributions and associated inference. Statist Methodol. 2009;6:344–362] introduced the generalized gamma-generated distribution with an extra positive parameter. A new three-parameter continuous model called the gamma-linear failure rate (LFR) distribution, which extends the LFR model, is proposed and studied. Various structural properties of the new distribution are derived, including some explicit expressions for ordinary and incomplete moments, generating function, probability-weighted moments, mean deviations and Rényi and Shannon entropies. We estimate the model parameters by maximum likelihood and obtain the observed information matrix. The new model is modified to cope with possible long-term survivors in lifetime data. We illustrate the usefulness of the proposed model by means of two applications to real data.  相似文献   

16.
Paired sequencing data are commonly collected in genomic studies to control biological variation. However, existing data processing strategies suffer at low coverage regions, which are unavoidable due to the limitation of current sequencing technology. Furthermore, information contained in the absolute values of the read counts is commonly ignored. We propose a read count ratio processing/modification method, to not only incorporate information contained in the absolute values of paired counts into one variable, but also mitigate the discrete artifact, especially when both counts are small. Simulation shows that the processed variable fits well with a Beta distribution, thus providing an easy tool for down-stream inference analysis.  相似文献   

17.
ABSTRACT

For any continuous baseline G distribution, Cordeiro and Castro pioneered the Kumaraswamy-G family of distributions with two extra positive parameters, which generalizes both Lehmann types I and II classes. We study some mathematical properties of the Kumaraswamy-normal (KwN) distribution including ordinary and incomplete moments, mean deviations, quantile and generating functions, probability weighted moments, and two entropy measures. We propose a new linear regression model based on the KwN distribution, which extends the normal linear regression model. We obtain the maximum likelihood estimates of the model parameters and provide some diagnostic measures such as global influence, local influence, and residuals. We illustrate the potentiality of the introduced models by means of two applications to real datasets.  相似文献   

18.
Abstract

Inferential methods based on ranks present robust and powerful alternative methodology for testing and estimation. In this article, two objectives are followed. First, develop a general method of simultaneous confidence intervals based on the rank estimates of the parameters of a general linear model and derive the asymptotic distribution of the pivotal quantity. Second, extend the method to high dimensional data such as gene expression data for which the usual large sample approximation does not apply. It is common in practice to use the asymptotic distribution to make inference for small samples. The empirical investigation in this article shows that for methods based on the rank-estimates, this approach does not produce a viable inference and should be avoided. A method based on the bootstrap is outlined and it is shown to provide a reliable and accurate method of constructing simultaneous confidence intervals based on rank estimates. In particular it is shown that commonly applied methods of normal or t-approximation are not satisfactory, particularly for large-scale inferences. Methods based on ranks are uniquely suitable for analysis of microarray gene expression data since they often involve large scale inferences based on small samples containing a large number of outliers and violate the assumption of normality. A real microarray data is analyzed using the rank-estimate simultaneous confidence intervals. Viability of the proposed method is assessed through a Monte Carlo simulation study under varied assumptions.  相似文献   

19.
Abstract

In this article, we introduce a new distribution for modeling positive data sets with high kurtosis, the modified slashed generalized exponential distribution. The new model can be seen as a modified version of the slashed generalized exponential distribution. It arises as a quotient of two independent random variables, one being a generalized exponential distribution in the numerator and a power of the exponential distribution in the denominator. We studied various structural properties (such as the stochastic representation, density function, hazard rate function and moments) and discuss moment and maximum likelihood estimating approaches. Two real data sets are considered in which the utility of the new model in the analysis with high kurtosis is illustrated.  相似文献   

20.
ABSTRACT

In this article, we introduce the Gompertz power series (GPS) class of distributions which is obtained by compounding Gompertz and power series distributions. This distribution contains several lifetime models such as Gompertz-geometric (GG), Gompertz-Poisson (GP), Gompertz-binomial (GB), and Gompertz-logarithmic (GL) distributions as special cases. Sub-models of the GPS distribution are studied in details. The hazard rate function of the GPS distribution can be increasing, decreasing, and bathtub-shaped. We obtain several properties of the GPS distribution such as its probability density function, and failure rate function, Shannon entropy, mean residual life function, quantiles, and moments. The maximum likelihood estimation procedure via a EM-algorithm is presented, and simulation studies are performed for evaluation of this estimation for complete data, and the MLE of parameters for censored data. At the end, a real example is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号