首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Data from past time periods and temporal correlation are rich sources of information for estimating small area parameters at the current period. This paper investigates the use of unit-level temporal linear mixed models for estimating linear parameters. Two models are considered, with domain and domain-time random effects. The first model assumes time independency and the second one AR(1)-type time correlation. They are fitted by a Fisher-scoring algorithm that calculates the residual maximum likelihood estimators of the model parameters. Based on the introduced models, empirical best linear unbiased predictors of small area linear parameters are studied, and analytic estimators for evaluating the performance of their mean squared errors are proposed. Three simulation experiments are carried out to study the behaviour of the fitting algorithm, the small area predictors and the estimators of the mean squared error. By using data of the Spanish surveys of income and living conditions of 2004–2008, an application to the estimation of 2008 average normalized net annual incomes in Spanish provinces by sex is given.  相似文献   

2.
Under a unit-level bivariate linear mixed model, this paper introduces small area predictors of expenditure means and ratios, and derives approximations and estimators of the corresponding mean squared errors. For the considered model, the REML estimation method is implemented. Several simulation experiments, designed to analyze the behavior of the introduced fitting algorithm, predictors and mean squared error estimators, are carried out. An application to real data from the Spanish household budget survey illustrates the behavior of the proposed statistical methodology. The target is the estimation of means of food and non-food household annual expenditures and of ratios of food household expenditures by Spanish provinces.  相似文献   

3.
In this paper, a new small domain estimator for area-level data is proposed. The proposed estimator is driven by a real problem of estimating the mean price of habitation transaction at a regional level in a European country, using data collected from a longitudinal survey conducted by a national statistical office. At the desired level of inference, it is not possible to provide accurate direct estimates because the sample sizes in these domains are very small. An area-level model with a heterogeneous covariance structure of random effects assists the proposed combined estimator. This model is an extension of a model due to Fay and Herriot [5], but it integrates information across domains and over several periods of time. In addition, a modified method of estimation of variance components for time-series and cross-sectional area-level models is proposed by including the design weights. A Monte Carlo simulation, based on real data, is conducted to investigate the performance of the proposed estimators in comparison with other estimators frequently used in small area estimation problems. In particular, we compare the performance of these estimators with the estimator based on the Rao–Yu model [23]. The simulation study also accesses the performance of the modified variance component estimators in comparison with the traditional ANOVA method. Simulation results show that the estimators proposed perform better than the other estimators in terms of both precision and bias.  相似文献   

4.
Prediction in linear mixed models   总被引:2,自引:0,他引:2  
Following estimation of effects from a linear mixed model, it is often useful to form predicted values for certain factor/variate combinations. The process has been well defined for linear models, but the introduction of random effects into the model means that a decision has to be made about the inclusion or exclusion of random model terms from the predictions. This paper discusses the interpretation of predictions formed including or excluding random terms. Four datasets are used to illustrate circumstances where different prediction strategies may be appropriate: in an orthogonal design, an unbalanced nested structure, a model with cubic smoothing spline terms and for kriging after spatial analysis. The examples also show the need for different weighting schemes that recognize nesting and aliasing during prediction, and the necessity of being able to detect inestimable predictions.  相似文献   

5.
This paper considers the effects of informative two-stage cluster sampling on estimation and prediction. The aims of this article are twofold: first to estimate the parameters of the superpopulation model for two-stage cluster sampling from a finite population, when the sampling design for both stages is informative, using maximum likelihood estimation methods based on the sample-likelihood function; secondly to predict the finite population total and to predict the cluster-specific effects and the cluster totals for clusters in the sample and for clusters not in the sample. To achieve this we derive the sample and sample-complement distributions and the moments of the first and second stage measurements. Also we derive the conditional sample and conditional sample-complement distributions and the moments of the cluster-specific effects given the cluster measurements. It should be noted that classical design-based inference that consists of weighting the sample observations by the inverse of sample selection probabilities cannot be applied for the prediction of the cluster-specific effects for clusters not in the sample. Also we give an alternative justification of the Royall [1976. The linear least squares prediction approach to two-stage sampling. Journal of the American Statistical Association 71, 657–664] predictor of the finite population total under two-stage cluster population. Furthermore, small-area models are studied under informative sampling.  相似文献   

6.
The admissibility results of Rao (1976), proved in the context of a nonsingular covariance matrix, are exteneded to the situation where the covariance matrix is singular. Admi.s s Lb Le linear estimators in the Gauss-Markoff model are characterized and admis-sibility of the best linear unbiased estimator is investigated.  相似文献   

7.
The problem of simultaneous estimation of variance components is considered for a balanced hierarchical mixed model under a sum of squared error loss. A new class of estimators is suggested which dominate the usual sensible estimators. These estimators shrink towards the geometric mean of the component mean squares that appear in the ANOVA table. Numerical results are tabled to exhibit the improvement in risk under a simple model.  相似文献   

8.
The admissibility results of Hoffmann (1977), proved in the context of a nonsingular covariance matrix are extended to the situation where the covariance matrix is singular. Admissible linear estimators in the Gauss-Markoff model are characterised and admissibility of the Best Linear Unbiased Estimator is investigated.  相似文献   

9.
We consider the estimation of thc variance components in generalized Linear model with random effects. The Method of Minimum Norm Quadratic Unbiased Estimators extending the Rao's argument is outlined. The method is illustrated with an analysis of cell irradiation data and compared to the methods of estimation proposed by Schall (1991).  相似文献   

10.
Generalized linear mixed models (GLMMs) are widely used to analyse non-normal response data with extra-variation, but non-robust estimators are still routinely used. We propose robust methods for maximum quasi-likelihood and residual maximum quasi-likelihood estimation to limit the influence of outlying observations in GLMMs. The estimation procedure parallels the development of robust estimation methods in linear mixed models, but with adjustments in the dependent variable and the variance component. The methods proposed are applied to three data sets and a comparison is made with the nonparametric maximum likelihood approach. When applied to a set of epileptic seizure data, the methods proposed have the desired effect of limiting the influence of outlying observations on the parameter estimates. Simulation shows that one of the residual maximum quasi-likelihood proposals has a smaller bias than those of the other estimation methods. We further discuss the equivalence of two GLMM formulations when the response variable follows an exponential family. Their extensions to robust GLMMs and their comparative advantages in modelling are described. Some possible modifications of the robust GLMM estimation methods are given to provide further flexibility for applying the method.  相似文献   

11.
The estimation or prediction of population characteristics based on the sample information is the key issue in survey sampling. If the sample sizes in subpopulations (domains) are large enough, similar methods as used for the whole population can be used to estimate or to predict subpopulations characteristics as well. To estimate or to predict characteristics of domains with small or even zero sample sizes, small area estimation methods “borrowing strength” from other subpopulations or time periods are widely used. We extend this problem and study methods of prediction of future population and subpopulations’ characteristics based on the longitudinal data.  相似文献   

12.
The Maximum Likelihood (ML) and Best Linear Unbiased (BLU) estimators of the location and scale parameters of an extreme value distribution (Lawless [1982]) are compared under conditions of small sample sizes and Type I censorship. The comparisons were made in terms of the mean square error criterion. According to this criterion, the ML estimator of σ in the case of very small sample sizes (n < 10) and heavy censorship (low censoring time) proved to be more efficient than the corresponding BLU estimator. However, the BLU estimator for σ attains parity with the corresponding ML estimator when the censoring time increases even for sample sizes as low as 10. The BLU estimator of σ attains equivalence with the ML estimator when the sample size increases above 10, particularly when the censoring time is also increased. The situation is reversed when it came to estimating the location parameter μ, as the BLU estimator was found to be consistently more efficient than the ML estimator despite the improved performance of the ML estimator when the sample size increases. However, computational ease and convenience favor the ML estimators.  相似文献   

13.
The paper gives a self-contained account of minimum disper­sion linear unbiased estimation of the expectation vector in a linear model with the dispersion matrix belonging to some, rather arbitrary, set of nonnegative definite matrices. The approach to linear estimation in general linear models recommended here is a direct generalization of some ideas and results presented by Rao (1973, 19 74) for the case of a general Gauss-Markov model

A new insight into the nature of some estimation problems originaly arising in the context of a general Gauss-Markov model as well as the correspondence of results known in the literature to those obtained in the present paper for general linear models are also given. As preliminary results the theory of projectors defined by Rao (1973) is extended.  相似文献   

14.
In survey sampling, policy decisions regarding the allocation of resources to sub‐groups of a population depend on reliable predictors of their underlying parameters. However, in some sub‐groups, called small areas due to small sample sizes relative to the population, the information needed for reliable estimation is typically not available. Consequently, data on a coarser scale are used to predict the characteristics of small areas. Mixed models are the primary tools in small area estimation (SAE) and also borrow information from alternative sources (e.g., previous surveys and administrative and census data sets). In many circumstances, small area predictors are associated with location. For instance, in the case of chronic disease or cancer, it is important for policy makers to understand spatial patterns of disease in order to determine small areas with high risk of disease and establish prevention strategies. The literature considering SAE with spatial random effects is sparse and mostly in the context of spatial linear mixed models. In this article, small area models are proposed for the class of spatial generalized linear mixed models to obtain small area predictors and corresponding second‐order unbiased mean squared prediction errors via Taylor expansion and a parametric bootstrap approach. The performance of the proposed approach is evaluated through simulation studies and application of the models to a real esophageal cancer data set from Minnesota, U.S.A. The Canadian Journal of Statistics 47: 426–437; 2019 © 2019 Statistical Society of Canada  相似文献   

15.
The mixed model is defined. The exact posterior distribution for the fixed effect vector is obtained. The exact posterior distribution for the error variance is obtained. The exact posterior mean and variance of a Bayesian estimator for the variances of random effects is also derived. All computations are non-iterative and avoid numerical integrations.  相似文献   

16.
The present article considers the Pitman Closeness (PC) criterion of certain hierarchical Bayes (HB) predictors derived under a normal mixed linear models for known ratios of variance components using a uniform prior for the vector of fixed effects and some proper or improper prior on the error variance. For a generalized Euclidean error, simultaneous HB predictors of several linear combinations of vector of effects are shown to be the Pitman-closest in the frequentist sense in the class of equivariant predictors for location group of transformations. The normality assumption can be relaxed to show that these HB predictors are the Pitman-closest for location-scale group of transformations for a wider family of elliptically symmetric distributions. Also for this family, the HB predictors turn out to be Pitman-closest in the class of all linear unbiased predictors (LUPs). All these results are extended for the HB predictor of finite population mean vector in the context of finite population sampling.  相似文献   

17.
The Dirichlet process has been used extensively in Bayesian non parametric modeling, and has proven to be very useful. In particular, mixed models with Dirichlet process random effects have been used in modeling many types of data and can often outperform their normal random effect counterparts. Here we examine the linear mixed model with Dirichlet process random effects from a classical view, and derive the best linear unbiased estimator (BLUE) of the fixed effects. We are also able to calculate the resulting covariance matrix and find that the covariance is directly related to the precision parameter of the Dirichlet process, giving a new interpretation of this parameter. We also characterize the relationship between the BLUE and the ordinary least-squares (OLS) estimator and show how confidence intervals can be approximated.  相似文献   

18.
In a recent paper5 Broemeling (1978) extended his earlier work on one-sided confidence regions for the variance ratios of balanced random-effects models to the two-sided case. The extension depends on a probability Inequality which was claimed to be tru We show here that it is false, hence the proof of the main result given in Ms parer is in error W also show Lhat the ntatement of his result remains true in certain special cases.  相似文献   

19.
Let Y be distributed symmetrically about Xβ. Natural generalizations of odd location statistics, say T‘Y’, and even location-free statistics, say W‘Y’, that were used by Hogg ‘1960, 1967)’ are introduced. We show that T‘Y’ is distributed symmetrically about β and thus E[T‘Y’] = β and that each element of T‘Y’ is uncorrelated with each element of W‘Y’. Applications of this result are made to R-estiraators and the result is extended to a multivariate linear model situation.  相似文献   

20.
For the balanced random effects models, when the variance components are correlated either naturally or through common prior structures, by assuming a mixed prior distribution for the variance components, we propose some new Bayesian estimators. To contrast and compare the new estimators with the minimum variance unbiased (MVUE) and restricted maximum likelihood estimators (RMLE), some simulation studies are also carried out. It turns out that the proposed estimators have smaller mean squared errors than the MVUE and RMLE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号