首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we study the mean square error properties of the generalized ridge estimator. We obtain the exact and the approximate bias and the mean square error of the operational generalized ridge estimator in terms of G( ) functions. We show, among other things, that the operational generalized ridge estimator does not dominate the ordinary least squares estimator up to a certain order of approximation. Finally, we note that the iterative procedures to obtain coverging ridge estimators should be used with caution.  相似文献   

2.
Iheil and Goldberger (1961) and Theil (1963) founded the mixed regression approach, Their mixed regression estimator is essentially a large class of estimators that includes ridge, generalized ridge and shrinkage estimators, Properties of these estimators when data contain outliers have not been examined extensively. The present investigation shows that the mixed regression estimator, when observationsare subject to shift in means and variances, is uniformly superior, in terms of squared bias and variance, to the least squares estimator.  相似文献   

3.
ABSTRACT

In this paper, we propose three generalized estimators, namely, generalized unrestricted estimator (GURE), generalized stochastic restricted estimator (GSRE), and generalized preliminary test stochastic restricted estimator (GPTSRE). The GURE can be used to represent the ridge estimator, almost unbiased ridge estimator (AURE), Liu estimator, and almost unbiased Liu estimator. When stochastic restrictions are available in addition to the sample information, the GSRE can be used to represent stochastic mixed ridge estimator, stochastic restricted Liu estimator, stochastic restricted almost unbiased ridge estimator, and stochastic restricted almost unbiased Liu estimator. The GPTSRE can be used to represent the preliminary test estimators based on mixed estimator. Using the GPTSRE, the properties of three other preliminary test estimators, namely preliminary test stochastic mixed ridge estimator, preliminary test stochastic restricted almost unbiased Liu estimator, and preliminary test stochastic restricted almost unbiased ridge estimator can also be discussed. The mean square error matrix criterion is used to obtain the superiority conditions to compare the estimators based on GPTSRE with some biased estimators for the two cases for which the stochastic restrictions are correct, and are not correct. Finally, a numerical example and a Monte Carlo simulation study are done to illustrate the theoretical findings of the proposed estimators.  相似文献   

4.
The purpose of this paper is two-fold. One is to compare the almost unbiased generalized ridge regression (AUGRR) estimator proposed by Singh, Chaubey and Dwivedi (1986) with the generalized ridge regression (GRR) estimator and with the ordinary least squares (OLS) estimator in terms of the mean squared error criterion. Second is to examine small sample properties of the operational almost unbiased ordinary ridge regression (AUORR) estimator by Monte Carlo experiments.  相似文献   

5.
Several alternative methods for derivation of the restricted ridge regression estimator (RRRE) are provided. Theoretical comparison and relationship of RRRE with related methods for regression with the multicollinearity problem are described. We also find inter-connections among RRRE, ordinary ridge regression estimator (ORRE), restricted least squares estimator (RLSE), modified ridge regression estimator (MRRE) and restricted modified generalized ridge estimator (RMGRE). Finally, numerical comparison, in addition to theoretical derivation, is also conducted with a Monte Carlo simulation and a real data example.  相似文献   

6.
The purpose of this paper is to examine the asymptotic properties of the operational almost unbiased estimator of regression coefficients which includes almost unbiased ordinary ridge estimator a s a special case. The small distrubance approximations for the bias and mean square error matrix of the estimator are derived. As a consequence, it is proved that, under certain conditions, the estimator is more efficient than a general class of estimators given by Vinod and Ullah (1981). Also it is shown that, if the ordinary ridge estimator (ORE) dominates the ordinary least squares estimator then the almost unbiased ordinary ridge estimator does not dominate ORE under the mean square error criterion.  相似文献   

7.
It is shown that a necessary and sufficient condition derived by Farebrother (1984)for a generalized ridge estimator to dominate the ordinary least-squares estimator with respect to the mean-square-error-matrix criterion in the linear regression model admits a similar interpretation as the well known criterion of Toro-Viz-carrondo and Wallace (1968)for the dominance of a restricted least-squares estimator over the ordinary least-squares estimator. Two other properties of the generalized ridge estimators, referring to the concept of admissibility, are also pointed out.  相似文献   

8.
It is known that collinearity among the explanatory variables in generalized linear models (GLMs) inflates the variance of maximum likelihood estimators. To overcome multicollinearity in GLMs, ordinary ridge estimator and restricted estimator were proposed. In this study, a restricted ridge estimator is introduced by unifying the ordinary ridge estimator and the restricted estimator in GLMs and its mean squared error (MSE) properties are discussed. The MSE comparisons are done in the context of first-order approximated estimators. The results are illustrated by a numerical example and two simulation studies are conducted with Poisson and binomial responses.  相似文献   

9.
In this article, we aim to study the linearized ridge regression (LRR) estimator in a linear regression model motivated by the work of Liu (1993). The LRR estimator and the two types of generalized Liu estimators are investigated under the PRESS criterion. The method of obtaining the optimal generalized ridge regression (GRR) estimator is derived from the optimal LRR estimator. We apply the Hald data as a numerical example and then make a simulation study to show the main results. It is concluded that the idea of transforming the GRR estimator as a complicated function of the biasing parameters to a linearized version should be paid more attention in the future.  相似文献   

10.
The presence of autocorrelation in errors and multicollinearity among the regressors have undesirable effects on the least-squares regression. There are a wide range of methods which are proposed to overcome the usefulness of the ordinary least-squares estimator or the generalized least-squares estimator, such as the Stein-rule, restricted least-squares or ridge estimator. Therefore, we introduce a new feasible generalized restricted ridge regression (FGRR) estimator to examine multicollinearity and autocorrelation problems simultaneously for the general linear regression model. We also derive some statistical properties of the FGRR estimator and comparisons have been conducted using matrix mean-square error. Moreover, a Monte Carlo simulation experiment is performed to investigate the performance of the proposed estimator over the others.  相似文献   

11.
In this article, the positive-rule Stein-type ridge estimator (PSRE) is introduced for the parameters in a multiple linear regression model with spherically symmetric error distributions when it is suspected that the parameter vector may be restricted to a linear manifold. The bias and quadratic risk functions of the PSRE are derived and compared with some related competing estimators in literatures. Particularly, some sufficient conditions are derived for superiority of the PSRE over the ordinary ridge estimator, the restricted ridge estimator and the preliminary test ridge estimator, respectively. Furthermore, some graphical results are provided to illustrate some of the theoretical results.  相似文献   

12.
This paper discusses a pre-test regression estimator which uses the least squares estimate when it is “large” and a ridge regression estimate for “small” regression coefficients, where the preliminary test is applied separately to each regression coefficient in turn to determine whether it is “large” or “small.” For orthogonal regressors, the exact finite-sample bias and mean squared error of the pre-test estimator are derived. The latter is less biased than a ridge estimator, and over much of the parameter space the pre-test estimator has smaller mean squared error than least squares. A ridge estimator is found to be inferior to the pre-test estimator in terms of mean squared error in many situations, and at worst the latter estimator is only slightly less efficient than the former at commonly used significance levels.  相似文献   

13.
Abstract

In this article, when it is suspected that regression coefficients may be restricted to a subspace, we discuss the parameter estimation of regression coefficients in a multiple regression model. Then, in order to improve the preliminary test almost ridge estimator, we study the positive-rule Stein-type almost unbiased ridge estimator based on the positive-rule stein-type shrinkage estimator and almost unbiased ridge estimator. After that, quadratic bias and quadratic risk values of the new estimator are derived and compared with some relative estimators. And we also discuss the option of parameter k. Finally, we perform a real data example and a Monte Carlo study to illustrate theoretical results.  相似文献   

14.
In the presence of collinearity certain biased estimation procedures like ridge regression, generalized inverse estimator, principal component regression, Liu estimator, or improved ridge and Liu estimators are used to improve the ordinary least squares (OLS) estimates in the linear regression model. In this paper new biased estimator (Liu estimator), almost unbiased (improved) Liu estimator and their residuals will be analyzed and compared with OLS residuals in terms of mean-squared error.  相似文献   

15.
Several biased estimators have been proposed as alternatives to the least squares estimator when multicollinearity is present in the multiple linear regression model. The ridge estimator and the principal components estimator are two techniques that have been proposed for such problems. In this paper the class of fractional principal component estimators is developed for the multiple linear regression model. This class contains many of the biased estimators commonly used to combat multicollinearity. In the fractional principal components framework, two new estimation techniques are introduced. The theoretical performances of the new estimators are evaluated and their small sample properties are compared via simulation with the ridge, generalized ridge and principal components estimators  相似文献   

16.
This paper adopts a Bayesian strategy for generalized ridge estimation for high-dimensional regression. We also consider significance testing based on the proposed estimator, which is useful for selecting regressors. Both theoretical and simulation studies show that the proposed estimator can simultaneously outperform the ordinary ridge estimator and the LSE in terms of the mean square error (MSE) criterion. The simulation study also demonstrates the competitive MSE performance of our proposal with the Lasso under sparse models. We demonstrate the method using the lung cancer data involving high-dimensional microarrays.  相似文献   

17.
In this paper, we derive the distribution and density functions of the feasible generalized ridge regression (GRR) estimator. It is shown that when the absolute value of a regression coefficient is close to zero, the distribution of the feasible GRR estimator is bimodal and has thinner tails than that of the OLS estimator.  相似文献   

18.
In this approach, some generalized ridge estimators are defined based on shrinkage foundation. Completely under the suspicion that some sub-space restrictions may occur, we present the estimators of the regression coefficients combining the idea of preliminary test estimator and Stein-rule estimator with the ridge regression methodology for normal models. Their exact risk expressions in addition to biases are derived and the regions of optimality of the estimators are exactly determined along with some numerical analysis. In this regard, the ridge parameter is determined in different disciplines.  相似文献   

19.
Shrinkage estimator is a commonly applied solution to the general problem caused by multicollinearity. Recently, the ridge regression (RR) estimators for estimating the ridge parameter k in the negative binomial (NB) regression have been proposed. The Jackknifed estimators are obtained to remedy the multicollinearity and reduce the bias. A simulation study is provided to evaluate the performance of estimators. Both mean squared error (MSE) and the percentage relative error (PRE) are considered as the performance criteria. The simulated result indicated that some of proposed Jackknifed estimators should be preferred to the ML method and ridge estimators to reduce MSE and bias.  相似文献   

20.
This paper considers the analysis of time to event data in the presence of collinearity between covariates. In linear and logistic regression models, the ridge regression estimator has been applied as an alternative to the maximum likelihood estimator in the presence of collinearity. The advantage of the ridge regression estimator over the usual maximum likelihood estimator is that the former often has a smaller total mean square error and is thus more precise. In this paper, we generalized this approach for addressing collinearity to the Cox proportional hazards model. Simulation studies were conducted to evaluate the performance of the ridge regression estimator. Our approach was motivated by an occupational radiation study conducted at Oak Ridge National Laboratory to evaluate health risks associated with occupational radiation exposure in which the exposure tends to be correlated with possible confounders such as years of exposure and attained age. We applied the proposed methods to this study to evaluate the association of radiation exposure with all-cause mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号