首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous time series applications of qualitative response models have ignored features of the data, such as conditional heteroscedasticity, that are routinely addressed in time series econometrics of financial data. This article addresses this issue by adding Markov-switching heteroscedasticity to a dynamic ordered probit model of discrete changes in the bank prime lending rate and estimating via the Gibbs sampler. The dynamic ordered probit model of Eichengreen, Watson, and Grossman allows for serial autocorrelation in probit analysis of a time series, and this article demonstrates the relative simplicity of estimating a dynamic ordered probit using the Gibbs sampler instead of the Eichengreen et al. maximum likelihood procedure. In addition, the extension to regime-switching parameters and conditional heteroscedasticity is easy to implement under Gibbs sampling. The article compares tests of goodness of fit between dynamic ordered probit models of the prime rate that have constant variance and conditional heteroscedasticity.  相似文献   

2.
Change-point time series specifications constitute flexible models that capture unknown structural changes by allowing for switches in the model parameters. Nevertheless most models suffer from an over-parametrization issue since typically only one latent state variable drives the switches in all parameters. This implies that all parameters have to change when a break happens. To gauge whether and where there are structural breaks in realized variance, we introduce the sparse change-point HAR model. The approach controls for model parsimony by limiting the number of parameters which evolve from one regime to another. Sparsity is achieved thanks to employing a nonstandard shrinkage prior distribution. We derive a Gibbs sampler for inferring the parameters of this process. Simulation studies illustrate the excellent performance of the sampler. Relying on this new framework, we study the stability of the HAR model using realized variance series of several major international indices between January 2000 and August 2015.  相似文献   

3.
This article presents a novel Bayesian analysis for linear mixed-effects models. The analysis is based on the method of partial collapsing that allows some components to be partially collapsed out of a model. The resulting partially collapsed Gibbs (PCG) sampler constructed to fit linear mixed-effects models is expected to exhibit much better convergence properties than the corresponding Gibbs sampler. In order to construct the PCG sampler without complicating component updates, we consider the reparameterization of model components by expressing a between-group variance in terms of a within-group variance in a linear mixed-effects model. The proposed method of partial collapsing with reparameterization is applied to the Merton’s jump diffusion model as well as general linear mixed-effects models with proper prior distributions and illustrated using simulated data and longitudinal data on sleep deprivation.  相似文献   

4.
The Gibbs sampler has a great potential to be an efficient and versatile estimation procedure in item response theory. In this article, based on a data augmentation scheme using the Gibbs sampler, we propose a Bayesian procedure to estimate the multidimensional three-parameter logistic model. With the introduction of the two latent variables, the full conditional distributions are tractable, and consequently the Gibbs sampling is easy to implement. Finally, the technique is illustrated by using simulated and real data, respectively.  相似文献   

5.
Bayesian random effects models may be fitted using Gibbs sampling, but the Gibbs sampler can be slow mixing due to what might be regarded as lack of model identifiability. This slow mixing substantially increases the number of iterations required during Gibbs sampling. We present an analysis of data on immunity after Rubella vaccinations which results in a slow-mixing Gibbs sampler. We show that this problem of slow mixing can be resolved by transforming the random effects and then, if desired, expressing their joint prior distribution as a sequence of univariate conditional distributions. The resulting analysis shows that the decline in antibodies after Rubella vaccination is relatively shallow compared to the decline in antibodies which has been shown after Hepatitis B vaccination.  相似文献   

6.
In this article, we propose a Bayesian approach to estimate the multiple structural change-points in a level and the trend when the number of change-points is unknown. Our formulation of the structural-change model involves a binary discrete variable that indicates the structural change. The determination of the number and the form of structural changes are considered as a model selection issue in Bayesian structural-change analysis. We apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo (SAMC) algorithm, to this structural-change model selection issue. SAMC effectively functions for the complex structural-change model estimation, since it prevents entrapment in local posterior mode. The estimation of the model parameters in each regime is made using the Gibbs sampler after each change-point is detected. The performance of our proposed method has been investigated on simulated and real data sets, a long time series of US real gross domestic product, US uses of force between 1870 and 1994 and 1-year time series of temperature in Seoul, South Korea.  相似文献   

7.
We propose an unobserved-component time series model of gross domestic product that includes Markov switching as an unobserved component. In addition to a trend component, the model has two time-varying drift components. One drift represents the expected rate of growth during recession; the other drift represents the expected rate during expansion. Estimates indicate a substantial decline in the latter annual rate for the United States from 6.4% in 1950 to 3.6% by 1990. We have employed weak priors based on prewar data. The estimation makes use of the Gibbs sampler and the Metropolis algorithm.  相似文献   

8.
Markov chain Monte Carlo methods, in particular, the Gibbs sampler, are widely used algorithms both in application and theoretical works in the classical and Bayesian paradigms. However, these algorithms are often computer intensive. Samawi et al. [Steady-state ranked Gibbs sampler. J. Stat. Comput. Simul. 2012;82(8), 1223–1238. doi:10.1080/00949655.2011.575378] demonstrate through theory and simulation that the dependent steady-state Gibbs sampler is more efficient and accurate in model parameter estimation than the original Gibbs sampler. This paper proposes the independent steady-state Gibbs sampler (ISSGS) approach to improve the original Gibbs sampler in multidimensional problems. It is demonstrated that ISSGS provides accuracy with unbiased estimation and improves the performance and convergence of the Gibbs sampler in multidimensional problems.  相似文献   

9.
We analyse a hierarchical Bayes model which is related to the usual empirical Bayes formulation of James-Stein estimators. We consider running a Gibbs sampler on this model. Using previous results about convergence rates of Markov chains, we provide rigorous, numerical, reasonable bounds on the running time of the Gibbs sampler, for a suitable range of prior distributions. We apply these results to baseball data from Efron and Morris (1975). For a different range of prior distributions, we prove that the Gibbs sampler will fail to converge, and use this information to prove that in this case the associated posterior distribution is non-normalizable.  相似文献   

10.
We consider a Bayesian deterministically trending dynamic time series model with heteroscedastic error variance, in which there exist multiple structural changes in level, trend and error variance, but the number of change-points and the timings are unknown. For a Bayesian analysis, a truncated Poisson prior and conjugate priors are used for the number of change-points and the distributional parameters, respectively. To identify the best model and estimate the model parameters simultaneously, we propose a new method by sequentially making use of the Gibbs sampler in conjunction with stochastic approximation Monte Carlo simulations, as an adaptive Monte Carlo algorithm. The numerical results are in favor of our method in terms of the quality of estimates.  相似文献   

11.
Likelihood-free methods such as approximate Bayesian computation (ABC) have extended the reach of statistical inference to problems with computationally intractable likelihoods. Such approaches perform well for small-to-moderate dimensional problems, but suffer a curse of dimensionality in the number of model parameters. We introduce a likelihood-free approximate Gibbs sampler that naturally circumvents the dimensionality issue by focusing on lower-dimensional conditional distributions. These distributions are estimated by flexible regression models either before the sampler is run, or adaptively during sampler implementation. As a result, and in comparison to Metropolis-Hastings-based approaches, we are able to fit substantially more challenging statistical models than would otherwise be possible. We demonstrate the sampler’s performance via two simulated examples, and a real analysis of Airbnb rental prices using a intractable high-dimensional multivariate nonlinear state-space model with a 36-dimensional latent state observed on 365 time points, which presents a real challenge to standard ABC techniques.  相似文献   

12.
One way that has been used for identifying and estimating threshold autoregressive (TAR) models for nonlinear time series follows the Markov chain Monte Carlo (MCMC) approach via the Gibbs sampler. This route has major computational difficulties, specifically, in getting convergence to the parameter distributions. In this article, a new procedure for identifying a TAR model and for estimating its parameters is developed by following the reversible jump MCMC procedure. It is found that the proposed procedure conveys a Markov chain with convergence properties.  相似文献   

13.
This article focuses on simulation-based inference for the time-deformation models directed by a duration process. In order to better capture the heavy tail property of the time series of financial asset returns, the innovation of the observation equation is subsequently assumed to have a Student-t distribution. Suitable Markov chain Monte Carlo (MCMC) algorithms, which are hybrids of Gibbs and slice samplers, are proposed for estimation of the parameters of these models. In the algorithms, the parameters of the models can be sampled either directly from known distributions or through an efficient slice sampler. The states are simulated one at a time by using a Metropolis-Hastings method, where the proposal distributions are sampled through a slice sampler. Simulation studies conducted in this article suggest that our extended models and accompanying MCMC algorithms work well in terms of parameter estimation and volatility forecast.  相似文献   

14.
This article describes three methods for computing a discrete joint density from full conditional densities. They are the Gibbs sampler, a hybrid method, and an interaction-based method. The hybrid method uses the iterative proportional fitting algorithm, and it is derived from the mixed parameterization of a contingency table. The interaction-based approach is derived from the canonical parameters, while the Gibbs sampler can be regarded as based on the mean parameters. In short, different approaches are motivated by different parameterizations. The setting of a bivariate conditionally specified distribution is used as the premise for comparing the numerical accuracy of the three methods. Detailed comparisons of marginal distributions, odds ratios and expected values are reported. We give theoretical justifications as to why the hybrid method produces better approximation than the Gibbs sampler. Generalizations to more than two variables are discussed. In practice, Gibbs sampler has certain advantages: it is conceptually easy to understand and there are many software tools available. Nevertheless, the hybrid method and the interaction-based method are accurate and simple alternatives when the Gibbs sampler results in a slowly mixing chain and requires substantial simulation efforts.  相似文献   

15.
Abstract. In this paper, we show how the construction of a trans‐dimensional equivalent of the Gibbs sampler can be used to obtain a powerful suite of adaptive algorithms suitable for trans‐dimensional MCMC samplers. These algorithms adapt at the local scale, optimizing performance at each iteration in contrast to the globally adaptive scheme proposed by others for the fixeddimensional problem. Our adaptive scheme ensures suitably high acceptance rates for MCMC and RJMCMC proposals without the need for (often prohibitively) time‐consuming pilot‐tuning exercises. We illustrate our methods using the problem of Bayesian model discrimination for the important class of autoregressive time series models and, through the use of a variety of prior and proposal structures, demonstrate their ability to provide powerful and effective adaptive sampling schemes.  相似文献   

16.
Bayesian shrinkage methods have generated a lot of interest in recent years, especially in the context of high‐dimensional linear regression. In recent work, a Bayesian shrinkage approach using generalized double Pareto priors has been proposed. Several useful properties of this approach, including the derivation of a tractable three‐block Gibbs sampler to sample from the resulting posterior density, have been established. We show that the Markov operator corresponding to this three‐block Gibbs sampler is not Hilbert–Schmidt. We propose a simpler two‐block Gibbs sampler and show that the corresponding Markov operator is trace class (and hence Hilbert–Schmidt). Establishing the trace class property for the proposed two‐block Gibbs sampler has several useful consequences. Firstly, it implies that the corresponding Markov chain is geometrically ergodic, thereby implying the existence of a Markov chain central limit theorem, which in turn enables computation of asymptotic standard errors for Markov chain‐based estimates of posterior quantities. Secondly, because the proposed Gibbs sampler uses two blocks, standard recipes in the literature can be used to construct a sandwich Markov chain (by inserting an appropriate extra step) to gain further efficiency and to achieve faster convergence. The trace class property for the two‐block sampler implies that the corresponding sandwich Markov chain is also trace class and thereby geometrically ergodic. Finally, it also guarantees that all eigenvalues of the sandwich chain are dominated by the corresponding eigenvalues of the Gibbs sampling chain (with at least one strict domination). Our results demonstrate that a minor change in the structure of a Markov chain can lead to fundamental changes in its theoretical properties. We illustrate the improvement in efficiency resulting from our proposed Markov chains using simulated and real examples.  相似文献   

17.
The ordinal probit, univariate or multivariate, is a generalized linear model (GLM) structure that arises frequently in such disparate areas of statistical applications as medicine and econometrics. Despite the straightforwardness of its implementation using the Gibbs sampler, the ordinal probit may present challenges in obtaining satisfactory convergence.We present a multivariate Hastings-within-Gibbs update step for generating latent data and bin boundary parameters jointly, instead of individually from their respective full conditionals. When the latent data are parameters of interest, this algorithm substantially improves Gibbs sampler convergence for large datasets. We also discuss Monte Carlo Markov chain (MCMC) implementation of cumulative logit (proportional odds) and cumulative complementary log-log (proportional hazards) models with latent data.  相似文献   

18.
In this article we investigate the relationship between the EM algorithm and the Gibbs sampler. We show that the approximate rate of convergence of the Gibbs sampler by Gaussian approximation is equal to that of the corresponding EM-type algorithm. This helps in implementing either of the algorithms as improvement strategies for one algorithm can be directly transported to the other. In particular, by running the EM algorithm we know approximately how many iterations are needed for convergence of the Gibbs sampler. We also obtain a result that under certain conditions, the EM algorithm used for finding the maximum likelihood estimates can be slower to converge than the corresponding Gibbs sampler for Bayesian inference. We illustrate our results in a number of realistic examples all based on the generalized linear mixed models.  相似文献   

19.
Bayesian inference for the multinomial probit model, using the Gibbs sampler with data augmentation, has been recently considered by some authors. The present paper introduces a modification of the sampling technique, by defining a hybrid Markov chain in which, after each Gibbs sampling cycle, a Metropolis step is carried out along a direction of constant likelihood. Examples with simulated data sets motivate and illustrate the new technique. A proof of the ergodicity of the hybrid Markov chain is also given.  相似文献   

20.
The Gibbs sampler has been used extensively in the statistics literature. It relies on iteratively sampling from a set of compatible conditional distributions and the sampler is known to converge to a unique invariant joint distribution. However, the Gibbs sampler behaves rather differently when the conditional distributions are not compatible. Such applications have seen increasing use in areas such as multiple imputation. In this paper, we demonstrate that what a Gibbs sampler converges to is a function of the order of the sampling scheme. Besides providing the mathematical background of this behaviour, we also explain how that happens through a thorough analysis of the examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号