首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multivariate distributions are more and more used to model the dependence encountered in many fields. However, classical multivariate distributions can be restrictive by their nature, while Sarmanov's multivariate distribution, by joining different marginals in a flexible and tractable dependence structure, often provides a valuable alternative. In this paper, we introduce some bivariate mixed Sarmanov distributions with the purpose to extend the class of bivariate Sarmanov distributions and to obtain new dependency structures. Special attention is paid to the bivariate mixed Sarmanov distribution with Poisson marginals and, in particular, to the resulting bivariate Sarmanov distributions with negative binomial and with Poisson‐inverse Gaussian marginals; these particular types of mixed distributions have possible applications in, for example modelling bivariate count data. The extension to higher dimensions is also discussed. Moreover, concerning the dependency structure, we also present some correlation formulas.  相似文献   

2.
ABSTRACT

In this paper two probability distributions are analyzed which are formed by compounding inverse Weibull with zero-truncated Poisson and geometric distributions. The distributions can be used to model lifetime of series system where the lifetimes follow inverse Weibull distribution and the subgroup size being random follows either geometric or zero-truncated Poisson distribution. Some of the important statistical and reliability properties of each of the distributions are derived. The distributions are found to exhibit both monotone and non-monotone failure rates. The parameters of the distributions are estimated using the expectation-maximization algorithm and the method of minimum distance estimation. The potentials of the distributions are explored through three real life data sets and are compared with similar compounded distributions, viz. Weibull-geometric, Weibull-Poisson, exponential-geometric and exponential-Poisson distributions.  相似文献   

3.
B. Chandrasekar 《Statistics》2013,47(2):161-165
Assuming that the random vectors X 1 and X 2 have independent bivariate Poisson distributions, the conditional distribution of X 1 given X 1?+?X 2?=?n is obtained. The conditional distribution turns out to be a finite mixture of distributions involving univariate binomial distributions and the mixing proportions are based on a bivariate Poisson (BVP) distribution. The result is used to establish two properties of a bivariate Poisson stochastic process which are the bivariate extensions of the properties for a Poisson process given by Karlin, S. and Taylor, H. M. (1975). A First Course in Stochastic Processes, Academic Press, New York.  相似文献   

4.
In this study, we deal with the problem of overdispersion beyond extra zeros for a collection of counts that can be correlated. Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative binomial distributions have been considered. First, we propose a multivariate count model in which all counts follow the same distribution and are correlated. Then we extend this model in a sense that correlated counts may follow different distributions. To accommodate correlation among counts, we have considered correlated random effects for each individual in the mean structure, thus inducing dependency among common observations to an individual. The method is applied to real data to investigate variation in food resources use in a species of marsupial in a locality of the Brazilian Cerrado biome.  相似文献   

5.
Book reviews     
We propose two moment ratios based on the first four moments. These moment ratios are useful in identifying different members from a class of discrete or continuous distributions. These ratios are also useful in approximating the Neyman type A and the generalized Poisson distribution by the negative binomial distribution.  相似文献   

6.
In this paper, we introduce a new lifetime distribution by compounding exponential and Poisson–Lindley distributions, named the exponential Poisson–Lindley (EPL) distribution. A practical situation where the EPL distribution is most appropriate for modelling lifetime data than exponential–geometric, exponential–Poisson and exponential–logarithmic distributions is presented. We obtain the density and failure rate of the EPL distribution and properties such as mean lifetime, moments, order statistics and Rényi entropy. Furthermore, estimation by maximum likelihood and inference for large samples are discussed. The paper is motivated by two applications to real data sets and we hope that this model will be able to attract wider applicability in survival and reliability.  相似文献   

7.
The recurrence relations between the incomplete moments and the factorial incomplete moments of the modified power series distributions (MPSD) are derived. These relations are employed to obtain the experessions for the incomplete moments and the incomplete factorial moments of some particular members of the MPSD class such as the generalized negative binomial, the generalized Poisson, the generalized logrithmic series, the lost game distribution and the distribution of the number of customers served in a busy period. An application of the incomplete moments of the generalized Poisson distribution is provided in the economic selection of a manufactured product. A numerical example is provided using the Poisson distribution and the Generalized Poisson distribution. The example illustrates the difference in results using the two models  相似文献   

8.
New Explicit Examples of Fixed Points of Poisson Shot Noise Transforms   总被引:1,自引:0,他引:1  
The main objective of this paper is to establish a close relation between the fixed points of Poisson shot noise transforms and perpetuities of a special type. With this relation it is shown that the gamma distributions, the generalized positive Linnik distributions, and the S2 distributions are fixed points of Poisson shot noise transforms. The paper also proves that log‐convexity of the response functions is not needed for non‐negative Poisson shot noise distributions to be self‐decomposable. Finally, the problems of existence and uniqueness of the above mentioned perpetuities are investigated.  相似文献   

9.
ABSTRACT

Recently, Risti? and Nadarajah [A new lifetime distribution. J Stat Comput Simul. 2014;84:135–150] introduced the Poisson generated family of distributions and investigated the properties of a special case named the exponentiated-exponential Poisson distribution. In this paper, we study general mathematical properties of the Poisson-X family in the context of the T-X family of distributions pioneered by Alzaatreh et al. [A new method for generating families of continuous distributions. Metron. 2013;71:63–79], which include quantile, shapes of the density and hazard rate functions, asymptotics and Shannon entropy. We obtain a useful linear representation of the family density and explicit expressions for the ordinary and incomplete moments, mean deviations and generating function. One special lifetime model called the Poisson power-Cauchy is defined and some of its properties are investigated. This model can have flexible hazard rate shapes such as increasing, decreasing, bathtub and upside-down bathtub. The method of maximum likelihood is used to estimate the model parameters. We illustrate the flexibility of the new distribution by means of three applications to real life data sets.  相似文献   

10.
Summary.  A useful discrete distribution (the Conway–Maxwell–Poisson distribution) is revived and its statistical and probabilistic properties are introduced and explored. This distribution is a two-parameter extension of the Poisson distribution that generalizes some well-known discrete distributions (Poisson, Bernoulli and geometric). It also leads to the generalization of distributions derived from these discrete distributions (i.e. the binomial and negative binomial distributions). We describe three methods for estimating the parameters of the Conway–Maxwell–Poisson distribution. The first is a fast simple weighted least squares method, which leads to estimates that are sufficiently accurate for practical purposes. The second method, using maximum likelihood, can be used to refine the initial estimates. This method requires iterations and is more computationally intensive. The third estimation method is Bayesian. Using the conjugate prior, the posterior density of the parameters of the Conway–Maxwell–Poisson distribution is easily computed. It is a flexible distribution that can account for overdispersion or underdispersion that is commonly encountered in count data. We also explore two sets of real world data demonstrating the flexibility and elegance of the Conway–Maxwell–Poisson distribution in fitting count data which do not seem to follow the Poisson distribution.  相似文献   

11.
A two-parameter class of discrete distributions, Abel series distributions, generated by expanding a suitable pa,rametric function into a series of Abel polynomials is discussed. An Abel series distribution occurs in fluctuations of sample functions of stochastic processes and has applications in insurance risk, queueing, dam and storage processes. The probability generating function and the factorial moments of the Abel series distributions are obtained in closed forms. It is pointed out that the name of the generalized Poisson distribution of Consul and Jain is justified by the form of its generating function. Finally it is shown that this generalized Poisson distribution is the only member of the Abel series distributions which is closed under convolution.  相似文献   

12.
ABSTRACT

The distributions obtained by left-truncating at k a mixed Poisson distribution, denoted kT-MP, and those obtained by mixing previously left-truncated Poisson distributions, denoted M-kTP, are characterized by means of their probability generating function. The main consequence is that every kT-MP distribution is a M-kTP distribution, but not the other way around.  相似文献   

13.
A new generalization of the Poisson distribution was given by Consul and Jain (1970, 73). Since then more than twenty papers, written by various researchers, have appeared on this model under the titles of Generalized Poisson Distribution (GPD), Lagrangian Poisson distribution or modified power series distribution. Here the author provides two physical models, based on differential-difference equations, which lead to the GPD. A number of axioms are given for a steady state point process which produce the generalized Poisson process. Also, the GPD is derived as the limiting distribution of the two quasi-binomial distributions based on urn models.  相似文献   

14.
In this study, we introduce the Heine process, {Xq(t), t > 0}, 0 < q < 1, where the random variable Xq(t), for every t > 0, represents the number of events (occurrences or arrivals) during a time interval (0, t]. The Heine process is introduced as a q-analog of the basic Poisson process. Also, in this study, we prove that the distribution of the waiting time Wν, q, ν ? 1, up to the νth arrival, is a q-Erlang distribution and the interarrival times Tk, q = Wk, q ? Wk ? 1, q,?k = 1, 2, …, ν with W0, q = 0 are independent and equidistributed with a q-Exponential distribution.  相似文献   

15.
The author describes a method for improving standard “exact” confidence intervals in discrete distributions with respect to size while retaining correct level. The binomial, negative binomial, hypergeometric, and Poisson distributions are considered explicitly. Contrary to other existing methods, the author's solution possesses a natural nesting condition: if α < α', the 1 ‐ α' confidence interval is included in the 1 ‐ α interval. Nonparametric confidence intervals for a quantile are also considered.  相似文献   

16.
This paper discusses four alternative methods of forming bivariate distributions with compound Poisson marginals. Basic properties of each bivariate version are given. A new bivariate negative binomial distribution, and four bivariate versions of the Sichel distribution, are defined and their properties given.  相似文献   

17.
In this article, posterior distribution, posterior moments, and predictive distribution for the modified power series distributions deformed at any of a support point under linex and generalized entropy loss function are derived. It is assumed that the prior information can be summarized by a uniform, Beta, two-sided power, Gamma, or generalized Pareto distributions. The obtained results are demonstrated on the generalized Poisson and the generalized negative binomial distribution deformed at a given point.  相似文献   

18.
This paper presents a new family of distributions for count data, the so called zero-modified power series (ZMPS), which is an extension of the power series (PS) distribution family, whose support starts at zero. This extension consists in modifying the probability of observing zero of each PS distribution, enabling the new zero-modified distribution to appropriately accommodate data which have any amount of zero observations (for instance, zero-inflated or zero-deflated data). The Hurdle distribution version of the ZMPS distribution is presented. PS distributions included in the proposed ZMPS family are the Poisson, Generalized Poisson, Geometric, Binomial, Negative Binomial and Generalized Negative Binomial distributions. The paper also describes the properties and particularities of the new distribution family for count data. The distribution parameters are estimated via maximum likelihood method and the use of the new family is illustrated in three real data sets. We emphasize that the new distribution family can accommodate sets of count data without any previous knowledge on the characteristic of zero-inflation or zero-deflation present in the data.  相似文献   

19.
On Parametric Bootstrapping and Bayesian Prediction   总被引:1,自引:0,他引:1  
Abstract.  We investigate bootstrapping and Bayesian methods for prediction. The observations and the variable being predicted are distributed according to different distributions. Many important problems can be formulated in this setting. This type of prediction problem appears when we deal with a Poisson process. Regression problems can also be formulated in this setting. First, we show that bootstrap predictive distributions are equivalent to Bayesian predictive distributions in the second-order expansion when some conditions are satisfied. Next, the performance of predictive distributions is compared with that of a plug-in distribution with an estimator. The accuracy of prediction is evaluated by using the Kullback–Leibler divergence. Finally, we give some examples.  相似文献   

20.
Two moment ratios are proposed for their uses In discriminating member among a family of dlscrete distributions and In approximating a member by another one Approximation of the Generalized Poisson( Borel–Tanner) and Neyman Type A distributions by the negatlve blnomial are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号