首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among reliability systems, one of the basic systems is a parallel system. In this article, we consider a parallel system consisting of n identical components with independent lifetimes having a common distribution function F. Under the condition that the system has failed by time t, with t being 100pth percentile of F(t = F ?1(p), 0 < p < 1), we characterize the probability distributions based on the mean past lifetime of the components of the system. These distributions are described in the form of a specific shape on the left of t and arbitrary continuous function on the right tail.  相似文献   

2.
The use of maximum-likelihood estimation as discussed by Sprott and Viveros (1984) is extended to include the log F distribution to accommodate skewness. The role played by linear pivotals in relation to likelihood and efficiency is discussed. Normal, t, and log F likelihoods are defined and used to generate possible normal, t, and log F linear pivotal quantities. The results are applied to the location-scale family, where exact results are available to assess the numerical accuracy of the proposed procedure. Refinements using saddlepoint approximations are obtained.  相似文献   

3.
《随机性模型》2013,29(2):147-156
We consider a population of n individuals. Each of these individuals generates a discrete time branching stochastic process. We study the number of ancestors S(n,t) whose offspring at time t exceeds level θ(t), where θ(t) is some positive valued function. It is proved that S(n,t) may be approximated as t → ∞ and n → ∞ by some stochastic processes with independent increments.

  相似文献   

4.
LetX1,X2, ..., be real-valued random variables forming a strictly stationary sequence, and satisfying the basic requirement of being either pairwise positively quadrant dependent or pairwise negatively quadrant dependent. LetF^ be the marginal distribution function of theXips, which is estimated by the empirical distribution functionFn and also by a smooth kernel-type estimateFn, by means of the segmentX1, ...,Xn. These estimates are compared on the basis of their mean squared errors (MSE). The main results of this paper are the following. Under certain regularity conditions, the optimal bandwidth (in the MSE sense) is determined, and is found to be the same as that in the independent identically distributed case. It is also shown thatn MSE(Fn(t)) andnMSE (F^n(t)) tend to the same constant, asn→∞ so that one can not discriminate be tween the two estimates on the basis of the MSE. Next, ifi(n) = min {k∈{1, 2, ...}; MSE (Fk(t)) ≤ MSE (Fn(t))}, then it is proved thati(n)/n tends to 1, asn→∞. Thus, once again, one can not choose one estimate over the other in terms of their asymptotic relative efficiency. If, however, the squared bias ofF^n(t) tends to 0 sufficiently fast, or equivalently, the bandwidthhn satisfies the requirement thatnh3n→ 0, asn→∞, it is shown that, for a suitable choice of the kernel, (i(n) ?n)/(nhn) tends to a positive number, asn→∞ It follows that the deficiency ofFn(t) with respect toF^n(t),i(n) ?n, is substantial, and, actually, tends to ∞, asn→∞. In terms of deficiency, the smooth estimateF^n(t) is preferable to the empirical distribution functionFn(t)  相似文献   

5.
6.
The classical bivariate F distribution arises from ratios of chi-squared random variables with common denominators. A consequent disadvantage is that its univariate F marginal distributions have one degree of freedom parameter in common. In this paper, we add a further independent chi-squared random variable to the denominator of one of the ratios and explore the extended bivariate F distribution, with marginals on arbitrary degrees of freedom, that results. Transformations linking F, beta and skew t distributions are then applied componentwise to produce bivariate beta and skew t distributions which also afford marginal (beta and skew t) distributions with arbitrary parameter values. We explore a variety of properties of these distributions and give an example of a potential application of the bivariate beta distribution in Bayesian analysis.  相似文献   

7.
Abstract

In this paper, we consider a k-out-of-n system consisting of n identical components with independent lifetimes. We show that when the underlying distribution function F(t) is absolutely continuous, then it can be univocally determined by some particular mean residual lives or mean inactivity times of the system. It is then shown that these results may be extended to coherent (or mixed) systems.  相似文献   

8.
ABSTRACT

We develop new Bayesian regression tests for prespecified regression coefficients. Simple, closed forms of the Bayes factors are derived that depend only on the regression t-statistic and F-statistic and the usual associated t and F distributions. The priors that allow those forms are simple and also meaningful, requiring minimal but practically important subjective inputs.  相似文献   

9.
The generalized AR(1) process y t = a t y t-1+ v t is considered, where the parameter a t follows the AR(1) process a t = Ga t-1+ w t.Assuming that V t and w t are Gaussian and independent, the first six exact predictors for future values of y t are derived. These exact predictors are compared with Box-Jenkins -type approximations. MACSYMA, a computer algebra program, is utilized in the derivation of the predictors.  相似文献   

10.
Let {X t , t ∈ ?} be a sequence of iid random variables with an absolutely continuous distribution. Let a > 0 and c ∈ ? be some constants. We consider a sequence of 0-1 valued variables {ξ t , t ∈ ?} obtained by clipping an MA(1) process X t  ? aX t?1 at the level c, i.e., ξ t  = I[X t  ? aX t?1 < c] for all t ∈ ?. We deal with the estimation problem in this model. Properties of the estimators of the parameters a and c, the success probability p, and the 1-lag autocorrelation r 1 are investigated. A numerical study is provided as an illustration of the theoretical results.  相似文献   

11.
Complete sets of orthogonal F-squares of order n = sp, where g is a prime or prime power and p is a positive integer have been constructed by Hedayat, Raghavarao, and Seiden (1975). Federer (1977) has constructed complete sets of orthogonal F-squares of order n = 4t, where t is a positive integer. We give a general procedure for constructing orthogonal F-squares of order n from an orthogonal array (n, k, s, 2) and an OL(s, t) set, where n is not necessarily a prime or prime power. In particular, we show how to construct sets of orthogonal F-squares of order n = 2sp, where s is a prime or prime power and p is a positive integer. These sets are shown to be near complete and approach complete sets as s and/or p become large. We have also shown how to construct orthogonal arrays by these methods. In addition, the best upper bound on the number t of orthogonal F(n, λ1), F(n, λ2), …, F(n, λ1) squares is given.  相似文献   

12.
We consider the specific transformation of a Wiener process {X(t), t ≥ 0} in the presence of an absorbing barrier a that results when this process is “time-locked” with respect to its first passage time T a through a criterion level a, and the evolution of X(t) is considered backwards (retrospectively) from T a . Formally, we study the random variables defined by Y(t) ≡ X(T a  ? t) and derive explicit results for their density and mean, and also for their asymptotic forms. We discuss how our results can aid interpretations of time series “response-locked” to their times of crossing a criterion level.  相似文献   

13.
14.
This short article shows an unified approach to representing and computing the cumulative distribution function for noncentral t, F, and χ2. Unlike the existing algorithms, which involve different expansion and/or recurrence, the new approach consistently represents all the three noncentral cumulative distribution functions as the integral of the normal cumulative distribution function and χ2 density function.  相似文献   

15.
Let {Sn, n ≥ 1} be a sequence of partial sums of independent and identically distributed non-negative random variables with a common distribution function F. Let F belong to the domain of attraction of a stable law with exponent α, 0 < α < 1. Suppose H(t) = ? N(t), t ? 0, where N(t) = max(n : Sn ≥ t). Under some additional assumptions on F, the difference between H(t) and its asymptotic value as t → ∞ is estimated.  相似文献   

16.
Odile Pons 《Statistics》2013,47(5):377-388
Nonparametric estimators of the survival function S(t) = P(Tt) for a partially observed time variable T have been defined by several methods, in particular, by integral self-consistency equations. The author establishes explicit expressions of the estimators in an additive form and extend this approach to several cases: a left-truncated and right-censored variable and the left-censored or left-truncated sojourn times of a right-censored semi-Markov process. These estimators are always identical to the product-limit estimators if hazard functions may be defined.  相似文献   

17.
The size of the two-sample t test is generally thought to be robust against nonnormal distributions if the sample sizes are large. This belief is based on central limit theory, and asymptotic expansions of the moments of the t statistic suggest that robustness may be improved for moderate sample sizes if the variance, skewness, and kurtosis of the distributions are matched, particularly if the sample sizes are also equal.

It is shown that asymptotic arguments such as these can be misleading and that, in fact, the size of the t test can be as large as unity if the distributions are allowed to be completely arbitrary. Restricting the distributions to be identical or symmetric (but otherwise arbitrary) does not guarantee that the size can be controlled either, but controlling the tail-heaviness of the distributions does. The last result is proved more generally for the k-sample F test.  相似文献   

18.
Skew normal distribution is an alternative distribution to the normal distribution to accommodate asymmetry. Since then extensive studies have been done on applying Azzalini’s skewness mechanism to other well-known distributions, such as skew-t distribution, which is more flexible and can better accommodate long tailed data than the skew normal one. The Kumaraswamy generalized distribution (Kw ? F) is another new class of distribution which is capable of fitting skewed data that can not be fitted well by existing distributions. Such a distribution has been widely studied and various versions of generalization of this distribution family have been introduced. In this article, we introduce a new generalization of the skew-t distribution based on the Kumaraswamy generalized distribution. The new class of distribution, which we call the Kumaraswamy skew-t (KwST) has the ability of fitting skewed, long, and heavy-tailed data and is more flexible than the skew-t distribution as it contains the skew-t distribution as a special case. Related properties of this distribution family such as mathematical properties, moments, and order statistics are discussed. The proposed distribution is applied to a real dataset to illustrate the estimation procedure.  相似文献   

19.
Consider an ergodic Markov chain X(t) in continuous time with an infinitesimal matrix Q = (qij) defined on a finite state space {0, 1,…, N}. In this note, we prove that if X(t) is skip-free positive (negative, respectively), i.e., qij, = 0 for j > i+ 1 (i > j+ 1), then the transition probability pij(t) = Pr[X(t)=j | X(0) =i] can be represented as a linear combination of p0N(t) (p(m)(N0)(t)), 0 ≤ m ≤N, where f(m)(t) denotes the mth derivative of a function f(t) with f(0)(t) =f(t). If X(t) is a birth-death process, then pij(t) is represented as a linear combination of p0N(m)(t), 0 ≤mN - |i-j|.  相似文献   

20.
《随机性模型》2013,29(1):139-157
We consider the one-sided and the two-sided first-exit problem for a compound Poisson process with linear deterministic decrease between positive and negative jumps. This process (X(t)) t≥0 occurs as the workload process of a single-server queueing system with random workload removal, which we denote by M/G u /G d /1, where G u (G d ) stands for the distribution of the upward (downward) jumps; other applications are to cash management, dams, and several related fields. Under various conditions on G u and G d (assuming e.g. that one of them is hyperexponential, Erlang or Coxian), we derive the joint distribution of τ y =inf{t≥0|X(t)?(0,y)}, y>0, and X(τ y ) as well as that of T=inf{t≥0|X(t)≤0} and X(T). We also determine the distribution of sup{X(t)|0≤tT}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号