共查询到20条相似文献,搜索用时 0 毫秒
1.
Wen-Chih Chiu 《Journal of applied statistics》2009,36(3):255-275
The generally weighted moving average (GWMA) control chart is an extension model of exponentially weighted moving average (EWMA) control chart. Recently, some approaches have been proposed to modify EWMA charts with fast initial response (FIR) features. We introduce these approaches in GWMA-type charts. Via simulation, various control schemes are designed and then their average run lengths are computed and compared. Based on the overall performance, it is showed that the DGWMA chart is the best choice especially when the shift is moderate, and the GWMA charts provided with additional FIR feature have a good performance only in detecting large shifts during the initial stage. 相似文献
2.
A general model for the zone control chart is presented. Using this model, it is shown that there are score vectors for zone control charts which result in superior average run length performance in comparison to Shewhart charts with common runs rules. A fast initial response (FIR) feature for the zone control chart is also proposed. Average run lengths of the zone control chart with this feature are calculated. It is shown that the FIR feature improves zone control chart performance by providing significantly earlier signals when the process is out of control. 相似文献
3.
This study extends the generally weighted moving average (GWMA) control chart by imitating the double exponentially weighted moving average (DEWMA) technique. The proposed chart is called the double generally weighted moving average (DGWMA) control chart. Simulation is employed to evaluate the average run length characteristics of the GWMA, DEWMA and DGWMA control charts. An extensive comparison of these control charts reveals that the DGWMA control chart with time-varying control limits is more sensitive than the GWMA and the DEWMA control charts for detecting medium shifts in the mean of a process when the shifts are between 0.5 and 1.5 standard deviations. Additionally, the GWMA control chart performs better when the mean shifts are below the 0.5 standard deviation, and the DEWMA control performs better when the mean shifts are above the 1.5 standard deviation. The design of the DGWMA control chart is also discussed. 相似文献
4.
Average run lengths of the zone control chart are presented, The performance of this chart is compared with that of several Shewhart charts with and without runs rules, It is shown that the standard zone control chart has performance similar to some even simpler charts and a much higher false alarm rate than the Shewhart chart with all of the common runs rules. It is also shown that a slightly modified zone control chart outperforms the Shewhart chart with the common runs rules. 相似文献
5.
AbstractGenerally weighted moving average (GWMA) control charts have been validated for effective detection of small process shifts, and perform better than exponentially weighted moving average (EWMA) control charts. These charts are available based on single sampling; however, repetitive sampling charts have received less attention. Here, a GWMA control chart based on repetitive sampling (namely an RS-GWMA chart) is proposed for enhancing detectability of small process shifts. Simulations show that the proposed RS-GWMA chart with large design and small adjustment parameters outperforms existing hybrid EWMA (HEWMA) control charts based on repetitive sampling. An in-silico example is considered for demonstrating the applicability of the proposed RS-GWMA chart. 相似文献
6.
A new S2 control chart is presented for monitoring the process variance by utilizing a repetitive sampling scheme. The double control limits called inner and outer control limits are proposed, whose coefficients are determined by considering the average run length (ARL) and the average sample number when the process is in control. The proposed control chart is compared with the existing Shewhart S2 control chart in terms of the ARLs. The result shows that the proposed control chart is more efficient than the existing control chart in detecting the process shift. 相似文献
7.
ABSTRACTRecently considerable research has been devoted to monitoring increases of incidence rate of adverse rare events. This paper extends some one-sided upper exponentially weighted moving average (EWMA) control charts from monitoring normal means to monitoring Poisson rate when sample sizes are varying over time. The approximated average run length bounds are derived for these EWMA-type charts and compared with the EWMA chart previously studied. Extensive simulations have been conducted to compare the performance of these EWMA-type charts. An illustrative example is given. 相似文献
8.
Properties of the Shewhart X-chart for controlling the mean of a process with a normal distribution are investigated for the situation where the process variance Ó2must be estimated from initial sample data. The control limits of the X-chart depend on the estimate of Ó2and thus, unlike the case when Ó2is known, the X-chart is not equivalent to a sequence of independent tests. When Ó2is estimated the distribution of the run length is not geometric and cannot be characterized simply in terms of the probability of a signal at a given point. The average run length (ARL) for the X-chart is expressed in terms of an integral involving the normal cdf, and it is shown that the chart signals with probability one, but the ARL may not be finite if the size of the 2 sample used to estimate Ó2is sufficiently small. In addition, certain bounds for the ARL are also derived. Numerical integration is use to show that the effect of using small sample sizes in estimating Ó2is to increase the ARL and the variance of the run length distribution 相似文献
9.
《Journal of Statistical Computation and Simulation》2012,82(15):3068-3092
ABSTRACTQuality control charts have been widely recognized as a potentially powerful statistical process monitoring tool in statistical process control because of their superior ability in detecting shifts in the process parameters. Recently, auxiliary-information-based control charts have been proposed and shown to have excellent speed in detecting process shifts than those based without it. In this paper, we design a new synthetic control chart that is based on a statistic that utilizes information from both the study and auxiliary variables. The proposed synthetic chart encompasses the classical synthetic chart. The construction, optimal design, run length profiles, and the performance evaluation of the new chart are discussed in detail. It turns out that the proposed synthetic chart performs uniformly better than the classical synthetic chart when detecting different kinds of shifts in the process mean under both zero-state and steady-state run length performances. Moreover, with reasonable assumptions, the proposed chart also surpasses the exponentially weighted moving average control chart. An application with a simulated data set is also presented to explain the implementation of the proposed control chart. 相似文献
10.
Muhammad Awais 《Journal of Statistical Computation and Simulation》2018,88(5):1003-1025
In the statistical process control literature, there exists several improved quality control charts based on cost-effective sampling schemes, including the ranked set sampling (RSS) and median RSS (MRSS). A generalized cost-effective RSS scheme has been recently introduced for efficiently estimating the population mean, namely varied L RSS (VLRSS). In this article, we propose a new exponentially weighted moving average (EWMA) control chart for monitoring the process mean using VLRSS, named the EWMA-VLRSS chart, under both perfect and imperfect rankings. The EWMA-VLRSS chart encompasses the existing EWMA charts based on RSS and MRSS (named the EWMA-RSS and EWMA-MRSS charts). We use extensive Monte Carlo simulations to compute the run length characteristics of the EWMA-VLRSS chart. The proposed chart is then compared with the existing EWMA charts. It is found that, with either perfect or imperfect rankings, the EWMA-VLRSS chart is more sensitive than the EWMA-RSS and EWMA-MRSS charts in detecting small to large shifts in the process mean. A real dataset is also used to explain the working of the EWMA-VLRSS chart. 相似文献
11.
The np control chart is used widely in Statistical Process Control (SPC) for attributes. It is difficult to design an np chart that simultaneously satisfies a requirement on false alarm rate and has high detection effectiveness. This is mainly because one is often unable to make the in-control Average Run Length ARL0 of an np chart close to a specified or desired value. This article proposes a new np control chart which is able to overcome the problems suffered by the conventional np chart. It is called the Double Inspection (DI) np chart, because it uses a double inspection scheme to decide the process status (in control or out of control). The first inspection decides the process status according to the number of non-conforming units found in a sample; and the second inspection makes a decision based on the location of a particular non-conforming unit in the sample. The double inspection scheme makes the in-control ARL0 very close to a specified value and the out-of-control Average Run Length ARL1 quite small. As a result, the requirement on a false alarm rate is satisfied and the detection effectiveness also achieves a high level. Moreover, the DI np chart retains the operational simplicity of the np chart to a large degree and achieves the performance improvement without requiring extra inspection (testing whether a unit is conforming or not). 相似文献
12.
Gemai Chen 《Revue canadienne de statistique》1998,26(2):311-322
R, s and s2 charts with estimated control limits are widely used in practice. Common practice in control-chart theory is to estimate the control limits using data from the process and, once the process is determined to be in control, to treat the resulting control limits as though fixed. While there are empirical rules for setting up the control charts using past or trial data, little is known about the run length distributions of these charts when the fact that control limits are estimated is taken into account. In this paper, we derive and evaluate the run length distributions associated with the R, s and s2 charts when the process standard deviation a is estimated. The results are then used to discuss the appropriateness of the widely followed empirical rules for choosing the number m of samples and the sample size n. 相似文献
13.
《Journal of Statistical Computation and Simulation》2012,82(12):2734-2747
In this paper, the problem of monitoring process data that can be modelled by exponential distribution is considered when observations are from type-II censoring. Such data are common in many practical inspection environment. An average run length unbiased (ARL-unbiased) control scheme is developed when the in-control scale parameter is known. The performance of the proposed control charts are investigated in terms of the ARL and standard deviation of the run length. The effects of parameter estimation on the proposed control charts are also evaluated. Then, we consider the design of the ARL-unbiased control charts when the in-control scale parameter is estimated. Finally, an example is used to illustrate the implementation of the proposed control charts. 相似文献
14.
Statistical quality control charts have been widely accepted as a potentially powerful process monitoring tool because of their excellent speed in tracking shifts in the underlying process parameter(s). In recent studies, auxiliary-information-based (AIB) control charts have shown superior run length performances than those constructed without using it. In this paper, a new double sampling (DS) control chart is constructed whose plotting-statistics requires information on the study variable and on any correlated auxiliary variable for efficiently monitoring the process mean, namely AIB DS chart. The AIB DS chart also encompasses the classical DS chart. We discuss in detail the construction, optimal design, run length profiles, and the performance evaluations of the proposed chart. It turns out that the AIB DS chart performs uniformly better than the DS chart when detecting different kinds of shifts in the process mean. It is also more sensitive than the classical synthetic and AIB synthetic charts when detecting a particular shift in the process mean. Moreover, with some realistic beliefs, the proposed chart outperforms the exponentially weighted moving average chart. An illustrative example is also presented to explain the working and implementation of the proposed chart. 相似文献
15.
Shin-Li Lu 《统计学通讯:理论与方法》2018,47(11):2684-2700
Non parametric control charts have received increasing attention in the field of statistical process control. This paper presents a non parametric double generally weighted moving average (DGWMA) sign chart for monitoring small deviations when the quality characteristics of a process are unknown. The statistical performance of the non parametric DGWMA sign chart is evaluated and compared with those of other charts, including the exponentially weighted moving average (EWMA), generally weighted moving average (GWMA), and double EWMA (DEWMA) sign charts. Simulation studies indicate that the non parametric DGWMA sign chart with a large design and median adjustment parameters is always more sensitive than other charts in detecting small changes. 相似文献
16.
Saba Abbasi 《Journal of Statistical Computation and Simulation》2019,89(13):2562-2582
A statistical quality control chart is an important tool of the statistical process control, which is widely used to control and monitor a production process. The CUSUM chart is designed to detect a specific shift, provided that the shift size is known in advance. In practice, however, shift sizes are rarely known. It is then customary to use an adaptive CUSUM chart, which can effectively detect a range of shift sizes. In this paper, we enhance the sensitivities of the improved adaptive CUSUM mean charts using an auxiliary-information-based (AIB) mean estimator. The run length performances of the proposed charts are compared with those of the AIB adaptive and non-adaptive CUSUM charts in terms of the average run length (ARL), extra quadratic loss, and integral relative ARL. These run length comparisons reveal that the proposed charts are more sensitive than the existing charts when detecting different kinds of shift in the process mean. An example is given to demonstrate the implementation of existing and proposed charts. 相似文献
17.
Many multivariate quality control techniques are used for multivariate variable processes, but few work for multivariate attribute processes. To monitor multivariate attributes, controlling the false alarms (type I errors) and considering the correlation between attributes are two important issues. By taking into account these two issues, a new control chart is presented to monitor a bivariate binomial process. An example is illustrated for the proposed method. To evaluate the performance of the proposed method, a simulation study is conducted to compare the results with those using both the multivariate np chart and skewness reduction approaches. The results show that the correlation is taken into account in the designed chart and the overall false alarm is controlled at the nominal value. Moreover, the process shift can be quickly detected and the variable that is responsible for a signal can be determined. 相似文献
18.
ABSTRACT The EWMA control chart is used to detect small shifts in a process. It has been shown that, for certain values of the smoothing parameter, the EWMA chart for the mean is robust to non normality. In this article, we examine the case of non normality in the EWMA charts for the dispersion. It is shown that we can have an EWMA chart for dispersion robust to non normality when non normality is not extreme. 相似文献
19.
Control chart is an important statistical technique that is used to monitor the quality of a process. Shewhart control charts are used to detect larger disturbances in the process parameters, whereas cumulative sum (CUSUM) and exponential weighted moving average (EWMA) are meant for smaller and moderate changes. In this study, we enhanced mixed EWMA–CUSUM control charts with varying fast initial response (FIR) features and also with a runs rule of two out of three successive points that fall above the upper control limit. We investigate their run-length properties. The proposed control charting schemes are compared with the existing counterparts including classical CUSUM, classical EWMA, FIR CUSUM, FIR EWMA, mixed EWMA–CUSUM, 2/3 modified EWMA, and 2/3 CUSUM control charting schemes. A case study is presented for practical considerations using a real data set. 相似文献
20.
A synthetic mean square error (MSE) control chart is presented in this study for monitoring the changes in the mean and standard deviation of a normally distributed process. The synthetic MSE control chart is a combination of the standard MSE control chart and the conforming run length (CRL) control chart. From the numerical comparisons, the synthetic MSE control chart is always more efficient than the standard MSE control chart in detecting shifts in the process mean and standard deviation. The synthetic MSE chart also performs better than the exponentially weighted moving average-semicircle (EWMA-SC) chart, except for some cases where the process mean shifts are small. 相似文献