共查询到20条相似文献,搜索用时 0 毫秒
1.
Wen-Chih Chiu 《Journal of applied statistics》2009,36(3):255-275
The generally weighted moving average (GWMA) control chart is an extension model of exponentially weighted moving average (EWMA) control chart. Recently, some approaches have been proposed to modify EWMA charts with fast initial response (FIR) features. We introduce these approaches in GWMA-type charts. Via simulation, various control schemes are designed and then their average run lengths are computed and compared. Based on the overall performance, it is showed that the DGWMA chart is the best choice especially when the shift is moderate, and the GWMA charts provided with additional FIR feature have a good performance only in detecting large shifts during the initial stage. 相似文献
2.
This study extends the generally weighted moving average (GWMA) control chart by imitating the double exponentially weighted moving average (DEWMA) technique. The proposed chart is called the double generally weighted moving average (DGWMA) control chart. Simulation is employed to evaluate the average run length characteristics of the GWMA, DEWMA and DGWMA control charts. An extensive comparison of these control charts reveals that the DGWMA control chart with time-varying control limits is more sensitive than the GWMA and the DEWMA control charts for detecting medium shifts in the mean of a process when the shifts are between 0.5 and 1.5 standard deviations. Additionally, the GWMA control chart performs better when the mean shifts are below the 0.5 standard deviation, and the DEWMA control performs better when the mean shifts are above the 1.5 standard deviation. The design of the DGWMA control chart is also discussed. 相似文献
3.
A general model for the zone control chart is presented. Using this model, it is shown that there are score vectors for zone control charts which result in superior average run length performance in comparison to Shewhart charts with common runs rules. A fast initial response (FIR) feature for the zone control chart is also proposed. Average run lengths of the zone control chart with this feature are calculated. It is shown that the FIR feature improves zone control chart performance by providing significantly earlier signals when the process is out of control. 相似文献
4.
ABSTRACTRecently considerable research has been devoted to monitoring increases of incidence rate of adverse rare events. This paper extends some one-sided upper exponentially weighted moving average (EWMA) control charts from monitoring normal means to monitoring Poisson rate when sample sizes are varying over time. The approximated average run length bounds are derived for these EWMA-type charts and compared with the EWMA chart previously studied. Extensive simulations have been conducted to compare the performance of these EWMA-type charts. An illustrative example is given. 相似文献
5.
《Journal of Statistical Computation and Simulation》2012,82(12):2734-2747
In this paper, the problem of monitoring process data that can be modelled by exponential distribution is considered when observations are from type-II censoring. Such data are common in many practical inspection environment. An average run length unbiased (ARL-unbiased) control scheme is developed when the in-control scale parameter is known. The performance of the proposed control charts are investigated in terms of the ARL and standard deviation of the run length. The effects of parameter estimation on the proposed control charts are also evaluated. Then, we consider the design of the ARL-unbiased control charts when the in-control scale parameter is estimated. Finally, an example is used to illustrate the implementation of the proposed control charts. 相似文献
6.
Guoyi Zhang 《Journal of applied statistics》2014,41(6):1260-1273
The Shewhart R control chart and s control chart are widely used to monitor shifts in the process spread. One fact is that the distributions of the range and sample standard deviation are highly skewed. Therefore, the R chart and s chart neither provide an in-control average run length (ARL) of approximately 370 nor guarantee the desired type I error of 0.0027. Another disadvantage of these two charts is their failure in detecting an improvement in the process variability. In order to overcome these shortcomings, we propose the improved R chart (IRC) and s chart (ISC) with accurate approximation of the control limits by using cumulative distribution functions of the sample range and standard deviation. Simulation studies show that the IRC and ISC perform very well. We also compare the type II error risks and ARLs of the IRC and ISC and found that the s chart is generally more efficient than the R chart. Examples are given to illustrate the use of the developed charts. 相似文献
7.
《Journal of Statistical Computation and Simulation》2012,82(9):1864-1882
In this article, we propose an exponentially weighted moving average (EWMA) control chart for the shape parameter β of Weibull processes. The chart is based on a moving range when a single measurement is taken per sampling period. We consider both one-sided (lower-sided and upper-sided) and two-sided control charts. We perform simulations to estimate control limits that achieve a specified average run length (ARL) when the process is in control. The control limits we derive are ARL unbiased in that they result in ARL that is shorter than the stable-process ARL when β has shifted. We also perform simulations to determine Phase I sample size requirements if control limits are based on an estimate of β. We compare the ARL performance of the proposed chart to that of the moving range chart proposed in the literature. 相似文献
8.
Peyman Khosravi 《统计学通讯:模拟与计算》2019,48(6):1860-1871
In some applications, quality engineers cannot monitor the processes at the beginning of the production process. Because the process parameters are unknown and there are not enough initial samples to estimate the process parameters. Self-starting control charts are applied to monitor processes at the start-up stages with no enough initial samples. In this paper, we propose three self-starting control charts to monitor a logistic regression profile which models the relationship between a binomial response variable and explanatory variables. Also, we compare the proposed control charts with each other through simulation studies in terms of average run length (ARL) criterion. 相似文献
9.
AbstractGenerally weighted moving average (GWMA) control charts have been validated for effective detection of small process shifts, and perform better than exponentially weighted moving average (EWMA) control charts. These charts are available based on single sampling; however, repetitive sampling charts have received less attention. Here, a GWMA control chart based on repetitive sampling (namely an RS-GWMA chart) is proposed for enhancing detectability of small process shifts. Simulations show that the proposed RS-GWMA chart with large design and small adjustment parameters outperforms existing hybrid EWMA (HEWMA) control charts based on repetitive sampling. An in-silico example is considered for demonstrating the applicability of the proposed RS-GWMA chart. 相似文献
10.
In this paper, we propose new cumulative sum (CUSUM) and Shewhart-CUSUM (SCUSUM) control charts for monitoring the process mean using ranked-set sampling (RSS) and ordered RSS (ORSS) schemes. The proposed CUSUM charts include the Crosier's CUSUM (CCUSUM) and Shewhart-CCUSUM (SCCUSUM) charts using RSS, and the CUSUM, CCUSUM, SCUSUM and SCCUSUM charts using ORSS. Moreover, fast initial response features are also attached with these CUSUM charts to improve their sensitivities for an initial out-of-control situation. Monte Carlo simulations are used to compute the run length characteristics of the proposed CUSUM charts. Upon comparing the run length performances of the CUSUM charts, it turns out that the proposed CUSUM charts are more sensitive than their existing counterparts. A real dataset is used to explain the implementation of the proposed CUSUM charts. 相似文献
11.
《Journal of Statistical Computation and Simulation》2012,82(3):249-258
Recently statistical process control (SPC) methodologies have been developed to accommodate autocorrelated data. A primary method to deal with autocorrelated data is the use of residual charts. Although this methodology has the advantage that it can be applied to any autocorrelated data it needs time series modeling efforts. In addition for a X residual chart the detection capability is sometimes small compared to the X chart and EWMA chart. Zhang (1998) proposed the EWMAST chart which is constructed by charting the EWMA statistic for stationary processes to monitor the process mean. The performance of the EWMAST chart the X chart the X residual chart and other charts were compared in Zhang (1998). In this paper comparisons are made among the EWMAST chart the CUSUM residual chart and EWMA residual chart as well as the X residual chart and X chart via the average run length. 相似文献
12.
This article analyses the performance of a one-sided cumulative sum (CUSUM) chart that is initialized using a random starting point following the natural or intrinsic probability distribution of the CUSUM statistic. By definition, this probability distribution remains stable as the chart is used. The probability that the chart starts at zero according to this intrinsic distribution is always smaller than one, which confers on the chart a fast initial response feature. The article provides a fast and accurate algorithm to compute the in-control and out-of-control average run lengths and run-length probability distributions for one-sided CUSUM charts initialized using this random intrinsic fast initial response (RIFIR) scheme. The algorithm also computes the intrinsic distribution of the CUSUM statistic and random samples extracted from this distribution. Most importantly, no matter how the chart was initialized, if no level shifts and no alarms have occurred before time τ?>?0, the distribution of the run length remaining after τ is provided by this algorithm very accurately, provided that τ is not too small. 相似文献
13.
《Journal of Statistical Computation and Simulation》2012,82(15):3068-3092
ABSTRACTQuality control charts have been widely recognized as a potentially powerful statistical process monitoring tool in statistical process control because of their superior ability in detecting shifts in the process parameters. Recently, auxiliary-information-based control charts have been proposed and shown to have excellent speed in detecting process shifts than those based without it. In this paper, we design a new synthetic control chart that is based on a statistic that utilizes information from both the study and auxiliary variables. The proposed synthetic chart encompasses the classical synthetic chart. The construction, optimal design, run length profiles, and the performance evaluation of the new chart are discussed in detail. It turns out that the proposed synthetic chart performs uniformly better than the classical synthetic chart when detecting different kinds of shifts in the process mean under both zero-state and steady-state run length performances. Moreover, with reasonable assumptions, the proposed chart also surpasses the exponentially weighted moving average control chart. An application with a simulated data set is also presented to explain the implementation of the proposed control chart. 相似文献
14.
The existing synthetic exponential control charts are based on the assumption of known in-control parameter. However, the in-control parameter has to be estimated from a Phase I dataset. In this article, we use the exact probability distribution, especially the percentiles, mean, and standard deviation of the conditional average run length (ARL) to evaluate the effect of parameter estimation on the performance of the Phase II synthetic exponential charts. This approach accounts for the variability in the conditional ARL values of the synthetic chart obtained by different practitioners. Since parameter estimation results in more false alarms than expected, we develop an exact method to design the adjusted synthetic charts with desired conditional in-control performance. Results of known and unknown in-control parameter cases show that the control limit of the conforming run length sub-chart of the synthetic chart should be as small as possible. 相似文献
15.
Saba Abbasi 《Journal of Statistical Computation and Simulation》2019,89(13):2562-2582
A statistical quality control chart is an important tool of the statistical process control, which is widely used to control and monitor a production process. The CUSUM chart is designed to detect a specific shift, provided that the shift size is known in advance. In practice, however, shift sizes are rarely known. It is then customary to use an adaptive CUSUM chart, which can effectively detect a range of shift sizes. In this paper, we enhance the sensitivities of the improved adaptive CUSUM mean charts using an auxiliary-information-based (AIB) mean estimator. The run length performances of the proposed charts are compared with those of the AIB adaptive and non-adaptive CUSUM charts in terms of the average run length (ARL), extra quadratic loss, and integral relative ARL. These run length comparisons reveal that the proposed charts are more sensitive than the existing charts when detecting different kinds of shift in the process mean. An example is given to demonstrate the implementation of existing and proposed charts. 相似文献
16.
Gemai Chen 《Revue canadienne de statistique》1998,26(2):311-322
R, s and s2 charts with estimated control limits are widely used in practice. Common practice in control-chart theory is to estimate the control limits using data from the process and, once the process is determined to be in control, to treat the resulting control limits as though fixed. While there are empirical rules for setting up the control charts using past or trial data, little is known about the run length distributions of these charts when the fact that control limits are estimated is taken into account. In this paper, we derive and evaluate the run length distributions associated with the R, s and s2 charts when the process standard deviation a is estimated. The results are then used to discuss the appropriateness of the widely followed empirical rules for choosing the number m of samples and the sample size n. 相似文献
17.
Statistical quality control charts have been widely accepted as a potentially powerful process monitoring tool because of their excellent speed in tracking shifts in the underlying process parameter(s). In recent studies, auxiliary-information-based (AIB) control charts have shown superior run length performances than those constructed without using it. In this paper, a new double sampling (DS) control chart is constructed whose plotting-statistics requires information on the study variable and on any correlated auxiliary variable for efficiently monitoring the process mean, namely AIB DS chart. The AIB DS chart also encompasses the classical DS chart. We discuss in detail the construction, optimal design, run length profiles, and the performance evaluations of the proposed chart. It turns out that the AIB DS chart performs uniformly better than the DS chart when detecting different kinds of shifts in the process mean. It is also more sensitive than the classical synthetic and AIB synthetic charts when detecting a particular shift in the process mean. Moreover, with some realistic beliefs, the proposed chart outperforms the exponentially weighted moving average chart. An illustrative example is also presented to explain the working and implementation of the proposed chart. 相似文献
18.
Jimoh Olawale Ajadi 《统计学通讯:理论与方法》2017,46(14):6980-6993
Multivariate exponential weighted moving average and cumulative sum charts are the most common memory type multivariate control charts. They make use of the present and past information to detect small shifts in the process parameter(s). In this article, we propose two new multivariate control charts using a mixed version of their design setups. The plotting statistics of the proposed charts are based on the cumulative sum of the multivariate exponentially weighted moving averages. The performances of these schemes are evaluated in terms of average run length. The proposals are compared with their existing counterparts, including HotellingT2, MCUSUM, MEWMA, and MC1 charts. An application example is also presented for practical considerations using a real dataset. 相似文献
19.
Many multivariate quality control techniques are used for multivariate variable processes, but few work for multivariate attribute processes. To monitor multivariate attributes, controlling the false alarms (type I errors) and considering the correlation between attributes are two important issues. By taking into account these two issues, a new control chart is presented to monitor a bivariate binomial process. An example is illustrated for the proposed method. To evaluate the performance of the proposed method, a simulation study is conducted to compare the results with those using both the multivariate np chart and skewness reduction approaches. The results show that the correlation is taken into account in the designed chart and the overall false alarm is controlled at the nominal value. Moreover, the process shift can be quickly detected and the variable that is responsible for a signal can be determined. 相似文献
20.
Average run lengths of the zone control chart are presented, The performance of this chart is compared with that of several Shewhart charts with and without runs rules, It is shown that the standard zone control chart has performance similar to some even simpler charts and a much higher false alarm rate than the Shewhart chart with all of the common runs rules. It is also shown that a slightly modified zone control chart outperforms the Shewhart chart with the common runs rules. 相似文献