首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence function introduced by Hampe1 (1968, 1973, 1974) is a tool that can be used for outlier detection. Campbell (1978) has obtained influence function for Mahalanobis’s distance between two populations which can be used for detecting outliers in discrim-inant analysis. In this paper influence functions for a variety of parametric functions in multivariate analysis are obtained. Influence functions for the generalized variance, the matrix of regression coefficients, the noncentrality matrix Σ-1 δ in multivariate analysis of variance and its eigen values, the matrix L, which is a generalization of 1-R2 , canonical correlations, principal components and parameters that correspond to Pillai’s statistic (1955), Hotelling’s (1951) generalized To2 and Wilk’s Λ (1932), which can be used for outlier detection in multivariate analysis, are obtained. Delvin, Ginanadesikan and Kettenring (1975) have obtained influence function for the population correlation co-efficient in the bivariate case. It is shown in this paper that influence functions for parameters corresponding to r2, R2, and Mahalanobis D2 can be obtained as particular cases.  相似文献   

2.
We consider the problem of the estimation of the population mean of a study variable by assuming that the population means of an auxiliary variable are known at both stages of sample selection. The design weights at the first and second stages of sample selection are calibrated by optimizing the chi-squared type distance between the design weights and the new weights at both the first and second stages of sample selection. The regression type estimator in two-stage sampling is shown to be a special case. An application of the proposed estimators using a real data set is discussed.  相似文献   

3.
In this paper, we generalize the notion of classification of an observation (sample), into one of the given n populations to the case where some or all of the populations into which the new observation is to be classified may be new but related in a simple way to the given n populations. The discussion is in the frame-work of the given set of observations obeying the usual multivariate general linear hypothesis model. The set ofpopulations into which the new observation may be classified could be linear manifolds of the parameter space or their closed subsets or closed convex subsets or a combination of them or simply t subsets of the parameter space each of which has a finite number of elements. In the last case alikelihood ratio procedure can be obtained easily. Classification procedures given here are based on Mahalanobis distance. Bonferroni lower bound estimate of the probability of correctly classifying an observation is given for the case when the covariance matrix is known or is estimated from a large sample. A numerical example relating to the classification procedures suggested her is given.  相似文献   

4.
This paper explores the study on mixture of a class of probability density functions under type-I censoring scheme. In this paper, we mold a heterogeneous population by means of a two-component mixture of the class of probability density functions. The parameters of the class of mixture density functions are estimated and compared using the Bayes estimates under the squared-error and precautionary loss functions. A censored mixture dataset is simulated by probabilistic mixing for the computational purpose considering particular case of the Maxwell distribution. Closed-form expressions for the Bayes estimators along with their posterior risks are derived for censored as well as complete samples. Some stimulating comparisons and properties of the estimates are presented here. A factual dataset has also been for illustration.  相似文献   

5.
Likelihood ratio tests for the homogeneity of k normal means with the alternative restricted by an increasing trend are considered as well as the likelihood ratio tests of the null hypothesis that the means satisfy the trend. While the work is primarily a survey of results concerning the power functions of these tests, the extensions of some results to the case of not necessarily equal sample sizes are presented. For the case of known or unknown population variances, exact expressions are given for the power functions for k=3,4, and approximations are discussed for larger k. The topics of consistency, bias and monotonicity of the power functions are included. Also, Bartholomew's conjectures concerning minimal and maximal powers are investigated, with results of a new numerical study given.  相似文献   

6.
We consider the problem of the effect of sample designs on discriminant analysis. The selection of the learning sample is assumed to depend on the population values of auxiliary variables. Under a superpopulation model with a multivariate normal distribution, unbiasedness and consistency are examined for the conventional estimators (derived under the assumptions of simple random sampling), maximum likelihood estimators, probability-weighted estimators and conditionally unbiased estimators of parameters. Four corresponding sampled linear discriminant functions are examined. The rates of misclassification of these four discriminant functions and the effect of sample design on these four rates of misclassification are discussed. The performances of these four discriminant functions are assessed in a simulation study.  相似文献   

7.
This paper presents an alternative derivation of the expected value and variance of the sample lead to the one given in a previous paper. It deals with the case of random sampling from infinite population without replacement or from finite population with replacement. The derivation involves the use of the moment- and cumulant-generating functions, but is shorter and simpler than the original proofs.  相似文献   

8.
Adaptive design is widely used in clinical trials. In this paper, we consider the problem of estimating the mean of the selected normal population in two-stage adaptive designs. Under the LINEX and L2 loss functions, admissibility and minimax results are derived for some location invariant estimators of the selected normal mean. The naive sample mean estimator is shown to be inadmissible under the LINEX loss function and to be not minimax under both loss functions.  相似文献   

9.
The generating function of a marginal distribution of the reduced Palm distribution of a spatial point process is considered. It serves as a bivariate summary function, providing more information than some other popular univariate summary functions, such as the reduced second-moment function and the nearest-neighbour distance distribution function. Simulation confirmed that the new summary function is more informative when applied to patterns that exhibit both clustering and regularity on the same scale of observation.  相似文献   

10.
Random samples are assumed for the univariate two-sample problem. Sometimes this assumption may be violated in that an observation in one “sample”, of size m, is from a population different from that yielding the remaining m—1 observations (which are a random sample). Then, the interest is in whether this random sample of size m—1 is from the same population as the other random sample. If such a violation occurs and can be recognized, and also the non-conforming observation can be identified (without imposing conditional effects), then that observation could be removed and a two-sample test applied to the remaining samples. Unfortunately, satisfactory procedures for such a removal do not seem to exist. An alternative approach is to use two-sample tests whose significance levels remain the same when a non-conforming observation occurs, and is removed, as for the case where the samples were both truly random. The equal-tail median test is shown to have this property when the two “samples” are of the same size (and ties do not occur).  相似文献   

11.
The sample linear discriminant function (LDF) is known to perform poorly when the number of features p is large relative to the size of the training samples, A simple and rarely applied alternative to the sample LDF is the sample Euclidean distance classifier (EDC). Raudys and Pikelis (1980) have compared the sample LDF with three other discriminant functions, including thesample EDC, when classifying individuals from two spherical normal populations. They have concluded that the sample EDC outperforms the sample LDF when p is large relative to the training sample size. This paper derives conditions for which the two classifiers are equivalent when all parameters are known and employs a Monte Carlo simulation to compare the sample EDC with the sample LDF no only for the spherical normal case but also for several nonspherical parameter configurations. Fo many practical situations, the sample EDC performs as well as or superior to the sample LDF, even for nonspherical covariance configurations.  相似文献   

12.
Likelihood ratio tests are considered for two testing situations; testing for the homogeneity of k normal means against the alternative restricted by a simple tree ordering trend and testing the null hypothesis that the means satisfy the trend against all alternatives. Exact expressions are given for the power functions for k = 3 and 4 and unequal sample sizes, both for the case of known and unknown population variances, and approximations are discussed for larger k. Also, Bartholomew’s conjectures concerning minimal and maximal powers are investigated for the case of equal and unequal sample sizes. The power formulas are used to compute powers for a numerical example.  相似文献   

13.
Given only a random sample of observations, the usual estimator for the population mean is the sample mean. If additional information is provided it might be possible in some situations to obtain a better estimator. The situation considered here is when the variable whose mean is sought is composed of factors that are themselves observable. In the basic case, the variable can be expressed as the product of two, independent, more basic variables, but we also consider the case of more than two, the effect of correlation, and when there are observation costs.  相似文献   

14.
Hotelling's T2 statistic has many applications in multivariate analysis. In particular, it can be used to measure the influence that a particular observation vector has on parameter estimation. For example, in the bivariate case, there exists a direct relationship between the ellipse generated using a T2 statistic for individual observations and the hyperbolae generated using Hampel's influence function for the corresponding correlation coefficient. In this paper, we jointly use the components of an orthogonal decomposition of the T2 statistic and some influence functions to identify outliers or influential observations. Since the conditional components in the T2 statistic are related to the possible changes in the correlation between a variable and a group of other variables, we consider the theoretical influence functions of the correlations and multiple correlation coefficients. Finite-sample versions of these influence functions are used to find the estimated influence function values.  相似文献   

15.
This paper treats the problem of comparing different evaluations of procedures which rank the variances of k normal populations. Procedures are evaluated on the basis of appropriate loss functions for a particular goal. The goal considered involves ranking the variances of k independent normal populations when the corresponding population means are unknown. The variances are ranked by selecting samples of size n from each population and using the sample variances to obtain the ranking. Our results extend those of various authors who looked at the narrower problem of evaluating the standard proceduv 3 associated with selecting the smallest of the population variances (see e.g.,P. Somerville (1975)).

Different loss functions (both parametric and non-parametric) appropriate to the particular goal under consideration are proposed. Procedures are evaluated by the performance of their risk over a particular preference zone. The sample size n, the least favorable parametric configuration, and the maximum value of the risk are three quantities studied for each procedure. When k is small these quantities, calculated by numerical simulation, show which loss functions respond better and which respond worse to increases in sample size. Loss functions are compared with one another according to the extent of this response. Theoretical results are given for the case of asymptotically large k. It is shown that for certain cases the error incurred by using these asymptotic results is small when k is only moderately large.

This work is an outgrowth of and extends that of J. Reeves and M.J. Sobel (1987) by comparing procedures on the basis of the sample size (perpopulation) required to obtain various bounds on the associated risk functions. New methodologies are developed to evaluate complete ranking procedures in different settings.  相似文献   

16.
In longitudinal data, observations of response variables occur at fixed or random time points, and can be stopped by a termination event. When comparing longitudinal data for two groups, such irregular observation behavior must be considered to yield suitable results. In this article, we propose the use of nonparametric tests based on the difference between weighted cumulative mean functions for comparing two mean functions with an adjustment for difference in the timing of termination events. We also derive the asymptotic null distributions of the test statistics and examine their small sample properties through simulations. We apply our method to data from a study of liver cirrhosis.  相似文献   

17.
This paper deals with the nonparametric estimation of the mean and variance functions of univariate time series data. We propose a nonparametric dimension reduction technique for both mean and variance functions of time series. This method does not require any model specification and instead we seek directions in both the mean and variance functions such that the conditional distribution of the current observation given the vector of past observations is the same as that of the current observation given a few linear combinations of the past observations without loss of inferential information. The directions of the mean and variance functions are estimated by maximizing the Kullback–Leibler distance function. The consistency of the proposed estimators is established. A computational procedure is introduced to detect lags of the conditional mean and variance functions in practice. Numerical examples and simulation studies are performed to illustrate and evaluate the performance of the proposed estimators.  相似文献   

18.
The four-parameter Exponentiated Modified Weibull (EMW) is considered as an important lifetime distribution. Based on progressive Type-II censored sample, maximum likelihood and Bayesian estimators of the parameters, reliability function, and hazard rate function are derived. Two cases are considered: first, the case of one unknown exponent parameter of EMW and second, the case when two parameters of the EMW are both unknown. The Bayes estimators are studied under squared error and LINEX loss functions. The standard Bayes and importance sampling are considered for the estimation. Monte Carlo simulations are performed under different samples sizes and different censoring schemes for investigating and comparing the methods of estimation.  相似文献   

19.
Recurrent events are commonly encountered in the natural sciences, engineering, and medicine. The theory of renewal and regenerative processes provides an elegant mathematical foundation for idealized recurrent event processes. In real-world applications, however, the contexts tend to be complicated by a variety of practical intricacies, including observation schemes with different phase and data structures. This paper formulates a recurrent event process as a succession of independent and identically distributed first hitting times for a Wiener sample path as it passes through successive equally-spaced levels. We develop exact mathematical results for statistical inferences based on several observation schemes that include observation initiated at a renewal point, observation of a stationary process over a finite window, and other variants. We also consider inferences drawn from different data structures, including gap times between renewal points (or fragments thereof) and counts of renewal events occurring within an observation window. We explore the precision of estimates using simulated scenarios and develop empirical regression functions for planning the sample size of a recurrent event study. We demonstrate our results using data from a clinical trial for chronic obstructive pulmonary disease in which the recurrent events are successive exacerbations of the condition. The case study demonstrates how covariates can be incorporated into the analysis using threshold regression.  相似文献   

20.
Kernel discriminant analysis translates the original classification problem into feature space and solves the problem with dimension and sample size interchanged. In high‐dimension low sample size (HDLSS) settings, this reduces the ‘dimension’ to that of the sample size. For HDLSS two‐class problems we modify Mika's kernel Fisher discriminant function which – in general – remains ill‐posed even in a kernel setting; see Mika et al. (1999). We propose a kernel naive Bayes discriminant function and its smoothed version, using first‐ and second‐degree polynomial kernels. For fixed sample size and increasing dimension, we present asymptotic expressions for the kernel discriminant functions, discriminant directions and for the error probability of our kernel discriminant functions. The theoretical calculations are complemented by simulations which show the convergence of the estimators to the population quantities as the dimension grows. We illustrate the performance of the new discriminant rules, which are easy to implement, on real HDLSS data. For such data, our results clearly demonstrate the superior performance of the new discriminant rules, and especially their smoothed versions, over Mika's kernel Fisher version, and typically also over the commonly used naive Bayes discriminant rule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号