首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we introduce a bivariate weighted exponential distribution based on the generalized exponential distribution. This class of distributions generalizes the bivariate distribution with weighted exponential marginals (BWE). We derive different properties of this new distribution. It is a four-parameter distribution, and the maximum-likelihood estimator of unknown parameters cannot be obtained in explicit forms. One data set has been re-analyzed and it is observed that the proposed distribution provides better fit than the BWE distribution.  相似文献   

2.
Summary In this paper, we present a Bayesian analysis of the bivariate exponential distribution of Block and Basu (1974) assuming different prior densities for the parameters of the model and considering Laplace's method to obtain approximate marginal posterior and posterior moments of interest. We also find approximate Bayes estimators for the reliability of two-component systems at a specified timet 0 considering series and parallel systems. We illustrate the proposed methodology with a generated data set.  相似文献   

3.
Construction of non-exchangeable bivariate distribution functions   总被引:3,自引:0,他引:3  
A method is given for constructing bivariate distributions functions by means of the copula functions, and, hence, it is used for obtaining distribution functions that can describe the behaviour of non–exchangeable random vectors.  相似文献   

4.
In this paper, we introduce a bivariate Kumaraswamy (BVK) distribution whose marginals are Kumaraswamy distributions. The cumulative distribution function of this bivariate model has absolutely continuous and singular parts. Representations for the cumulative and density functions are presented and properties such as marginal and conditional distributions, product moments and conditional moments are obtained. We show that the BVK model can be obtained from the Marshall and Olkin survival copula and obtain a tail dependence measure. The estimation of the parameters by maximum likelihood is discussed and the Fisher information matrix is determined. We propose an EM algorithm to estimate the parameters. Some simulations are presented to verify the performance of the direct maximum-likelihood estimation and the proposed EM algorithm. We also present a method to generate bivariate distributions from our proposed BVK distribution. Furthermore, we introduce a BVK distribution which has only an absolutely continuous part and discuss some of its properties. Finally, a real data set is analysed for illustrative purposes.  相似文献   

5.
Skew normal distribution is an alternative distribution to the normal distribution to accommodate asymmetry. Since then extensive studies have been done on applying Azzalini’s skewness mechanism to other well-known distributions, such as skew-t distribution, which is more flexible and can better accommodate long tailed data than the skew normal one. The Kumaraswamy generalized distribution (Kw ? F) is another new class of distribution which is capable of fitting skewed data that can not be fitted well by existing distributions. Such a distribution has been widely studied and various versions of generalization of this distribution family have been introduced. In this article, we introduce a new generalization of the skew-t distribution based on the Kumaraswamy generalized distribution. The new class of distribution, which we call the Kumaraswamy skew-t (KwST) has the ability of fitting skewed, long, and heavy-tailed data and is more flexible than the skew-t distribution as it contains the skew-t distribution as a special case. Related properties of this distribution family such as mathematical properties, moments, and order statistics are discussed. The proposed distribution is applied to a real dataset to illustrate the estimation procedure.  相似文献   

6.
The popular generalized extreme value (GEV) distribution has not been a flexible model for extreme values in many areas. We propose a generalization – referred to as the Kumaraswamy GEV distribution – and provide a comprehensive treatment of its mathematical properties. We estimate its parameters by the method of maximum likelihood and provide the observed information matrix. An application to some real data illustrates flexibility of the new model. Finally, some bivariate generalizations of the model are proposed.  相似文献   

7.
In this paper, a new generalization of the Kumaraswamy distribution namely, the Kumaraswamy Marshall-Olkin Exponential distribution (KwMOE) is introduced and studied. Various properties are explored. The structural analysis includes various aspects such as limiting behaviour, shape properties, moments, quantiles, mean deviation, Renyi entropy, order statistics and stochastic ordering. Some useful characterizations of the family are also obtained. The method of maximum likelihood is used to estimate the model parameters. Monte Carlo simulation study is being conducted. An application to a real data set is presented for illustrative purposes.  相似文献   

8.
We develop nearly unbiased estimators for the Kumaraswamy distribution proposed by Kumaraswamy [Generalized probability density-function for double-bounded random-processes, J. Hydrol. 46 (1980), pp. 79–88], which has considerable attention in hydrology and related areas. We derive modified maximum-likelihood estimators that are bias-free to second order. As an alternative to the analytically bias-corrected estimators discussed, we consider a bias correction mechanism based on the parametric bootstrap. We conduct Monte Carlo simulations in order to investigate the performance of the corrected estimators. The numerical results show that the bias correction scheme yields nearly unbiased estimates.  相似文献   

9.
Summary Selection procedures of the better component in bivariate exponential (BVE) models are proposed. In this paper, we consider onlyBVE models proposed by Freund (1961) Marshall-Olkin (1967) and Block-Basu (1974). The probabilities of correct selection for the proposed procedures are compared by using the normal approximations. A numerical study on the determination of asymptotic relative efficiency (ARE) of the proposed procedures are presented.  相似文献   

10.
This paper presents a new test for testing bivariate exponentiality against the bivariate new better than used (BNBU) class of non-exponential probability distributions. The test statistic is a function of U-statistics and hence asymptotically normally distributed and consistent.  相似文献   

11.
Many lifetime distribution models have successfully served as population models for risk analysis and reliability mechanisms. The Kumaraswamy distribution is one of these distributions which is particularly useful to many natural phenomena whose outcomes have lower and upper bounds or bounded outcomes in the biomedical and epidemiological research. This article studies point estimation and interval estimation for the Kumaraswamy distribution. The inverse estimators (IEs) for the parameters of the Kumaraswamy distribution are derived. Numerical comparisons with maximum likelihood estimation and biased-corrected methods clearly indicate the proposed IEs are promising. Confidence intervals for the parameters and reliability characteristics of interest are constructed using pivotal or generalized pivotal quantities. Then, the results are extended to the stress–strength model involving two Kumaraswamy populations with different parameter values. Construction of confidence intervals for the stress–strength reliability is derived. Extensive simulations are used to demonstrate the performance of confidence intervals constructed using generalized pivotal quantities.  相似文献   

12.
Abstract

In this paper we study some characteristic properties of higher-degree bivariate stop-loss transforms (partial moments). A new bivariate distribution is proposed by extending the characterizing identity of univariate partial moments due to Lin (2003 Lin, G. D. 2003. Characterizations of the exponential distribution via the residual lifetime. Sankhyā: The Indian Journal of Statistics, Series A 65 (2):24958. [Google Scholar]) to the bivariate case. A real-data analysis is also carried out to illustrate the theoretical results.  相似文献   

13.
In this paper, the reliability properties of two-component parallel and series systems are considered for bivariate generalized exponential (BVGE) distribution introduced by Kundu and Gupta [Bivariate generalized exponential distribution. J Multivar Anal. 2009;100:581–593]. For this model, the moments and mean residual life functions of these systems and the regression mean residual life function are derived. Stochastic comparisons of series and parallel systems of BVGE distribution are investigated. Moreover, various ordering results for the comparisons of series and parallel systems arising from BVGE random vectors are obtained with respect to the usual stochastic, reversed hazard rate and likelihood ratio orderings.  相似文献   

14.
For the first time, a five-parameter distribution, called the Kumaraswamy Burr XII (KwBXII) distribution, is defined and studied. The new distribution contains as special models some well-known distributions discussed in lifetime literature, such as the logistic, Weibull and Burr XII distributions, among several others. We obtain the complete moments, incomplete moments, generating and quantile functions, mean deviations, Bonferroni and Lorenz curves and reliability of the KwBXII distribution. We provide two representations for the moments of the order statistics. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. For different parameter settings and sample sizes, various simulation studies are performed and compared to the performance of the KwBXII distribution. Three applications to real data sets demonstrate the usefulness of the proposed distribution and that it may attract wider applications in lifetime data analysis.  相似文献   

15.
The generalized exponential is the most commonly used distribution for analyzing lifetime data. This distribution has several desirable properties and it can be used quite effectively to analyse several skewed life time data. The main aim of this paper is to introduce absolutely continuous bivariate generalized exponential distribution using the method of Block and Basu (1974). In fact, the Block and Basu exponential distribution will be extended to the generalized exponential distribution. We call the new proposed model as the Block and Basu bivariate generalized exponential distribution, then, discuss its different properties. In this case the joint probability distribution function and the joint cumulative distribution function can be expressed in compact forms. The model has four unknown parameters and the maximum likelihood estimators cannot be obtained in explicit form. To compute the maximum likelihood estimators directly, one needs to solve a four dimensional optimization problem. The EM algorithm has been proposed to compute the maximum likelihood estimations of the unknown parameters. One data analysis is provided for illustrative purposes. Finally, we propose some generalizations of the proposed model and compare their models with each other.  相似文献   

16.
The generalized Rayleigh (GR) distribution [V.G. Vodǎ, Inferential procedures on a generalized Rayleigh variate, I, Appl. Math. 21 (1976), pp. 395–412; V.G. Vodǎ, Inferential procedures on a generalized Rayleigh variate, II, Appl. Math. 21 (1976), pp. 413–419] has been applied in several areas such as health, agriculture, biology and other sciences. For the first time, we propose the Kumaraswamy GR (KwGR) distribution for analysing lifetime data. The new density function can be expressed as a mixture of GR density functions. Explicit formulae are derived for some of its statistical quantities. The density function of the order statistics can be expressed as a mixture of GR density functions. We also propose a linear log-KwGR regression model for analysing data with real support to extend some known regression models. The estimation of parameters is approached by maximum likelihood. The importance of the new models is illustrated in two real data sets.  相似文献   

17.
ABSTRACT

In this paper, we provide conditions under which some bivariate dependence structures are preserved under bivariate weighted distributions. Bivariate weighted distributions whose dependence structure is the same as the original distribution are characterized. Finally, we discuss some examples to show the usefulness of our results.  相似文献   

18.
In this paper, we introduce a new distribution generated by gamma random variables. We show that this distribution includes as a special case the distribution of the lower record value from a sequence of i.i.d. random variables from a population with the exponentiated (generalized) exponential distribution. The properties of this distribution are derived and the estimation of the model parameters is discussed. Some applications to real data sets are finally presented for illustration.  相似文献   

19.
Recently, Lee and Cha proposed two general classes of discrete bivariate distributions. They have discussed some general properties and some specific cases of their proposed distributions. In this paper we have considered one model, namely bivariate discrete Weibull distribution, which has not been considered in the literature yet. The proposed bivariate discrete Weibull distribution is a discrete analogue of the Marshall–Olkin bivariate Weibull distribution. We study various properties of the proposed distribution and discuss its interesting physical interpretations. The proposed model has four parameters, and because of that it is a very flexible distribution. The maximum likelihood estimators of the parameters cannot be obtained in closed forms, and we have proposed a very efficient nested EM algorithm which works quite well for discrete data. We have also proposed augmented Gibbs sampling procedure to compute Bayes estimates of the unknown parameters based on a very flexible set of priors. Two data sets have been analyzed to show how the proposed model and the method work in practice. We will see that the performances are quite satisfactory. Finally, we conclude the paper.  相似文献   

20.
We develop a simple approach to finding the Fisher information matrix (FIM) for a single pair of order statistic and its concomitant, and Type II right, left, and doubly censored samples from an arbitrary bivariate distribution. We use it to determine explicit expressions for the FIM for the three parameters of Downton's bivariate exponential distribution for single pairs and Type II censored samples. We evaluate the FIM in censored samples for finite sample sizes and determine its limiting form as the sample size increases. We discuss implications of our findings to inference and experimental design using small and large censored samples and for ranked-set samples from this distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号