首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let X1:n ≤ X2:n ≤···≤ Xn:n denote the order statistics of a sample of n independent random variables X1, X2,…, Xn, all identically distributed as some X. It is shown that if X has a log-convex [log-concave] density function, then the general spacing vector (Xk1:n, Xk2:n ? Xk1:n,…, Xkr:n ? Xkr?1:n) is MTP2 [S-MRR2] whenever 1 ≤ k1 < k2 <···< kr ≤ n and 1 ≤ r ≤ n. Multivariate likelihood ratio ordering of such general spacing vectors corresponding to two random samples is also considered. These extend some of the results in the literature for usual spacing vectors.  相似文献   

2.
In this paper, we estimate the reliability of a system with k components. The system functions when at least s (1≤s≤k) components survive a common random stress. We assume that the strengths of these k components are subjected to a common stress which is independent of the strengths of these k components. If (X 1,X 2,…,X k ) are strengths of k components subjected to a common stress (Y), then the reliability of the system or system reliability is given byR=P[Y<X (k−s+1)] whereX (k−s+1) is (k−s+1)-th order statistic of (X 1,…,X k ). We estimate R when (X 1,…,X k ) follow an absolutely continuous multivariate exponential (ACMVE) distribution of Hanagal (1993) which is the submodel of Block (1975) and Y follows an independent exponential distribution. We also obtain the asymptotic normal (AN) distribution of the proposed estimator.  相似文献   

3.
Abstract

We introduce here the truncated version of the unified skew-normal (SUN) distributions. By considering a special truncations for both univariate and multivariate cases, we derive the joint distribution of consecutive order statistics X(r, ..., r + k) = (X(r), ..., X(r + K))T from an exchangeable n-dimensional normal random vector X. Further we show that the conditional distributions of X(r + j, ..., r + k) given X(r, ..., r + j ? 1), X(r, ..., r + k) given (X(r) > t)?and X(r, ..., r + k) given (X(r + k) < t) are special types of singular SUN distributions. We use these results to determine some measures in the reliability theory such as the mean past life (MPL) function and mean residual life (MRL) function.  相似文献   

4.
In this paper, by considering a (3n+1) -dimensional random vector (X0, XT, YT, ZT)T having a multivariate elliptical distribution, we derive the exact joint distribution of (X0, aTX(n), bTY[n], cTZ[n])T, where a, b, c∈?n, X(n)=(X(1), …, X(n))T, X(1)<···<X(n), is the vector of order statistics arising from X, and Y[n]=(Y[1], …, Y[n])T and Z[n]=(Z[1], …, Z[n])T denote the vectors of concomitants corresponding to X(n) ((Y[r], Z[r])T, for r=1, …, n, is the vector of bivariate concomitants corresponding to X(r)). We then present an alternate approach for the derivation of the exact joint distribution of (X0, X(r), Y[r], Z[r])T, for r=1, …, n. We show that these joint distributions can be expressed as mixtures of four-variate unified skew-elliptical distributions and these mixture forms facilitate the prediction of X(r), say, based on the concomitants Y[r] and Z[r]. Finally, we illustrate the usefulness of our results by a real data.  相似文献   

5.
Let X 1, X 2,…, X k be k (≥2) independent random variables from gamma populations Π1, Π2,…, Π k with common known shape parameter α and unknown scale parameter θ i , i = 1,2,…,k, respectively. Let X (i) denotes the ith order statistics of X 1,X 2,…,X k . Suppose the population corresponding to largest X (k) (or the smallest X (1)) observation is selected. We consider the problem of estimating the scale parameter θ M (or θ J ) of the selected population under the entropy loss function. For k ≥ 2, we obtain the Unique Minimum Risk Unbiased (UMRU) estimator of θ M (and θ J ). For k = 2, we derive the class of all linear admissible estimators of the form cX (2) (and cX (1)) and show that the UMRU estimator of θ M is inadmissible. The results are extended to some subclass of exponential family.  相似文献   

6.
ABSTRACT

In this article, we consider a (k + 1)n-dimensional elliptically contoured random vector (XT1, X2T, …, XTk, ZT)T = (X11, …, X1n, …, Xk1, …, Xkn, Z1, …, Zn)T and derive the distribution of concomitant of multivariate order statistics arising from X1, X2, …, Xk. Specially, we derive a mixture representation for concomitant of bivariate order statistics. The joint distribution of the concomitant of bivariate order statistics is also obtained. Finally, the usefulness of our result is illustrated by a real-life data.  相似文献   

7.
Let X= (X1,…, Xk)’ be a k-variate (k ≥ 2) normal random vector with unknown population mean vector μ = (μ1 ,…, μk)’ and covariance matrix Σ of order k and let μ[1] ≤ … ≤ μ[k] be the ordered values of the μ ’ s. No prior knowledge of the pairing of the μ[i] with the Xj. (or μ[i] with the σj 2) is assumed for any i and j (1 ≤ i, j ≤ k). Based on a random sample of N independent vector observations on X, this paper considers both upper and lower (one-sided) and two-sided 100γ% (0 < γ < 1) confidence intervals for μ[k] and μ[1], the largest and the smallest mean, respectively, when Σ is known and when Σ is equal to σ2R with common unknown variance σ2 > 0 and correlation matrix R known, respectively. An optimum two-sided confidence interval via finding the shortest length from this class is also considered. Necessary tables and computer program to actually apply these procedures are provided.  相似文献   

8.
Let X1,…, Xn be mutually independent non-negative integer-valued random variables with probability mass functions fi(x) > 0 for z= 0,1,…. Let E denote the event that {X1X2≥…≥Xn}. This note shows that, conditional on the event E, Xi-Xi+ 1 and Xi+ 1 are independent for all t = 1,…, k if and only if Xi (i= 1,…, k) are geometric random variables, where 1 ≤kn-1. The k geometric distributions can have different parameters θi, i= 1,…, k.  相似文献   

9.
The supremum of random variables representing a sequence of rewards is of interest in establishing the existence of optimal stopping rules. Necessary and sufficient conditions are given for existence of moments of supn(Xn ? cn) and supn(Sn ? cn) where X1, X2, … are i.i.d. random variables, Sn = X1 + … + Xn, and cn = (nL(n))1/r, 0 < r < 2, L = 1, L = log, and L = log log. Following Cohn (1974), “rates of convergence” results are used in the proof.  相似文献   

10.
Let X1,X2,… be independent and identically distributed nonnegative random variables with mean μ, and let Sn = X1 + … + Xn. For each λ > 0 and each n ≥ 1, let An be the interval [λnY, ∞), where γ > 1 is a constant. The number of times that Sn is in An is denoted by N. As λ tends to zero, the asymtotic behavior of N is studied. Specifically under suitable conditions, the expectation of N is shown to be (μλ?1)β + o(λ?β/2 where β = 1/(γ-1) and the variance of N is shown to be (μλ?1)β(βμ1)2σ2 + o(λ) where σ2 is the variance of Xn.  相似文献   

11.
Let X1, …,Xn, and Y1, … Yn be consecutive samples from a distribution function F which itself is randomly chosen according to the Ferguson (1973) Dirichlet-process prior distribution on the space of distribution functions. Typically, prediction intervals employ the observations X1,…, Xn in the first sample in order to predict a specified function of the future sample Y1, …, Yn. Here one- and two-sided prediction intervals for at least q of N future observations are developed for the situation in which, in addition to the previous sample, there is prior information available. The information is specified via the parameter α of the Dirichlet process prior distribution.  相似文献   

12.
Consider n independent random variables Zi,…, Zn on R with common distribution function F, whose upper tail belongs to a parametric family F(t) = Fθ(t),t ≥ x0, where θ ∈ ? ? R d. A necessary and sufficient condition for the family Fθ, θ ∈ ?, is established such that the k-th largest order statistic Zn?k+1:n alone constitutes the central sequence yielding local asymptotic normality ( LAN ) of the loglikelihood ratio of the vector (Zn?i+1:n)1 i=kof the k largest order statistics. This is achieved for k = k(n)→n→∞∞ with k/n→n→∞ 0.

In the case of vectors of central order statistics ( Zr:n, Zr+1:n,…, Zs:n ), with r/n and s/n both converging to q ∈ ( 0,1 ), it turns out that under fairly general conditions any order statistic Zm:n with r ≤ m ≤s builds the central sequence in a pertaining LAN expansion.These results lead to asymptotically optimal tests and estimators of the underlying parameter, which depend on single order statistics only  相似文献   

13.
A random vector X = (X 1,…,X n ) is negatively associated if and only if for every pair of partitions X 1 = (X π(1),…,X π(k)), X 2 = (X π(k+1),…,X π(n)) of X , P( X 1 ? A, X 2 ? B) ≤ P( X 1 ? A)P( X 2 ? B) whenever A and B are open upper sets and π is any permutation of {1,…,n}. In this paper, we develop some of concepts of negative dependence, which are weaker than negative association but stronger than negative orthant dependence by requiring the above inequality to hold only for some upper sets A and B and applying the arguments in Shaked.  相似文献   

14.
ABSTRACT

Suppose independent random samples are available from k(k ≥ 2) exponential populations ∏1,…,∏ k with a common location θ and scale parameters σ1,…,σ k , respectively. Let X i and Y i denote the minimum and the mean, respectively, of the ith sample, and further let X = min{X 1,…, X k } and T i  = Y i  ? X; i = 1,…, k. For selecting a nonempty subset of {∏1,…,∏ k } containing the best population (the one associated with max{σ1,…,σ k }), we use the decision rule which selects ∏ i if T i  ≥ c max{T 1,…,T k }, i = 1,…, k. Here 0 < c ≤ 1 is chosen so that the probability of including the best population in the selected subset is at least P* (1/k ≤ P* < 1), a pre-assigned level. The problem is to estimate the average worth W of the selected subset, the arithmetic average of means of selected populations. In this article, we derive the uniformly minimum variance unbiased estimator (UMVUE) of W. The bias and risk function of the UMVUE are compared numerically with those of analogs of the best affine equivariant estimator (BAEE) and the maximum likelihood estimator (MLE).  相似文献   

15.
Let X1X2,.be i.i.d. random variables and let Un= (n r)-1S?(n,r) h (Xi1,., Xir,) be a U-statistic with EUn= v, v unknown. Assume that g(X1) =E[h(X1,.,Xr) - v |X1]has a strictly positive variance s?2. Further, let a be such that φ(a) - φ(-a) =α for fixed α, 0 < α < 1, where φ is the standard normal d.f., and let S2n be the Jackknife estimator of n Var Un. Consider the stopping times N(d)= min {n: S2n: + n-12a-2},d > 0, and a confidence interval for v of length 2d,of the form In,d= [Un,-d, Un + d]. We assume that Var Un is unknown, and hence, no fixed sample size method is available for finding a confidence interval for v of prescribed width 2d and prescribed coverage probability α Turning to a sequential procedure, let IN(d),d be a sequence of sequential confidence intervals for v. The asymptotic consistency of this procedure, i.e. limd → 0P(v ∈ IN(d),d)=α follows from Sproule (1969). In this paper, the rate at which |P(v ∈ IN(d),d) converges to α is investigated. We obtain that |P(v ∈ IN(d),d) - α| = 0 (d1/2-(1+k)/2(1+m)), d → 0, where K = max {0,4 - m}, under the condition that E|h(X1, Xr)|m < ∞m > 2. This improves and extends recent results of Ghosh & DasGupta (1980) and Mukhopadhyay (1981).  相似文献   

16.
In this article, we consider the mean remaining strength of a k-out-of-n:F system in the stress–strength setup for the exchangeable components. We provide some results for parallel and series systems under this setup, where X1, X2, …, Xn are the strengths of the components designed under the common stress. An illustrative example is given for the k-out-of- n:F system using the multivariate FGM distribution.  相似文献   

17.
Let f be an unknown possibly multimodal density on Rd and let X1, X2, … be a sequence of independent random vectors with density f. Several recursive estimates of the mode of f are proposed, and sufficient conditions ensuring their weak and strong consistency are established.  相似文献   

18.
In this paper we consider a sequence of independent continuous symmetric random variables X1, X2, …, with heavy-tailed distributions. Then we focus on limiting behavior of randomly weighted averages Sn = R(n)1X1 + ??? + R(n)nXn, where the random weights R(n)1, …, Rn(n) which are independent of X1, X2, …, Xn, are the cuts of (0, 1) by the n ? 1 order statistics from a uniform distribution. Indeed we prove that cnSn converges in distribution to a symmetric α-stable random variable with cn = n1 ? 1/α1/α(α + 1).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号