首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Qingguo Tang 《Statistics》2013,47(2):388-404
A global smoothing procedure is developed using B-spline function approximation for estimating the unknown functions of a functional coefficient regression model with spatial data. A general formulation is used to treat mean regression, median regression, quantile regression and robust mean regression in one setting. The global convergence rates of the estimators of unknown coefficient functions are established. Various applications of the main results, including estimating conditional quantile coefficient functions and robustifying the mean regression coefficient functions are given. Finite sample properties of our procedures are studied through Monte Carlo simulations. A housing data example is used to illustrate the proposed methodology.  相似文献   

3.
ABSTRACT

The varying-coefficient single-index model (VCSIM) is a very general and flexible tool for exploring the relationship between a response variable and a set of predictors. Popular special cases include single-index models and varying-coefficient models. In order to estimate the index-coefficient and the non parametric varying-coefficients in the VCSIM, we propose a two-stage composite quantile regression estimation procedure, which integrates the local linear smoothing method and the information of quantile regressions at a number of conditional quantiles of the response variable. We establish the asymptotic properties of the proposed estimators for the index-coefficient and varying-coefficients when the error is heterogeneous. When compared with the existing mean-regression-based estimation method, our simulation results indicate that our proposed method has comparable performance for normal error and is more robust for error with outliers or heavy tail. We illustrate our methodologies with a real example.  相似文献   

4.
分位数回归技术综述   总被引:16,自引:0,他引:16  
普通最小二乘回归建立了在自变量X=x下因变量Y的条件均值与X的关系的线性模型。而分位数回归(Quantile Regression)则利用自变量X和因变量y的条件分位数进行建模。与普通的均值回归相比,它能充分反映自变量X对于因变量y的分布的位置、刻度和形状的影响,有着十分广泛的应用,尤其是对于一些非常关注尾部特征的情况。文章介绍了分位数回归的概念以及分位数回归的估计、检验和拟合优度,回顾了分位数回归的发展过程以及其在一些经济研究领域中的应用,最后做了总结。  相似文献   

5.
Quantile regression is a technique to estimate conditional quantile curves. It provides a comprehensive picture of a response contingent on explanatory variables. In a flexible modeling framework, a specific form of the conditional quantile curve is not a priori fixed. This motivates a local parametric rather than a global fixed model fitting approach. A nonparametric smoothing estimator of the conditional quantile curve requires to balance between local curvature and stochastic variability. In this paper, we suggest a local model selection technique that provides an adaptive estimator of the conditional quantile regression curve at each design point. Theoretical results claim that the proposed adaptive procedure performs as good as an oracle which would minimize the local estimation risk for the problem at hand. We illustrate the performance of the procedure by an extensive simulation study and consider a couple of applications: to tail dependence analysis for the Hong Kong stock market and to analysis of the distributions of the risk factors of temperature dynamics.  相似文献   

6.
7.
Value at Risk (VaR) forecasts can be produced from conditional autoregressive VaR models, estimated using quantile regression. Quantile modeling avoids a distributional assumption, and allows the dynamics of the quantiles to differ for each probability level. However, by focusing on a quantile, these models provide no information regarding expected shortfall (ES), which is the expectation of the exceedances beyond the quantile. We introduce a method for predicting ES corresponding to VaR forecasts produced by quantile regression models. It is well known that quantile regression is equivalent to maximum likelihood based on an asymmetric Laplace (AL) density. We allow the density's scale to be time-varying, and show that it can be used to estimate conditional ES. This enables a joint model of conditional VaR and ES to be estimated by maximizing an AL log-likelihood. Although this estimation framework uses an AL density, it does not rely on an assumption for the returns distribution. We also use the AL log-likelihood for forecast evaluation, and show that it is strictly consistent for the joint evaluation of VaR and ES. Empirical illustration is provided using stock index data. Supplementary materials for this article are available online.  相似文献   

8.
Value at risk (VaR) is the standard measure of market risk used by financial institutions. Interpreting the VaR as the quantile of future portfolio values conditional on current information, the conditional autoregressive value at risk (CAViaR) model specifies the evolution of the quantile over time using an autoregressive process and estimates the parameters with regression quantiles. Utilizing the criterion that each period the probability of exceeding the VaR must be independent of all the past information, we introduce a new test of model adequacy, the dynamic quantile test. Applications to real data provide empirical support to this methodology.  相似文献   

9.
In this article, we use the asymmetric Laplace distribution to define a new method to determine the influence of a certain observation in the fit of quantile regression models. Our measure is based on the likelihood displacement function and we propose two types of measures in order to determine influential observations in a set of conditional quantiles conjointly or in each conditional quantile of interest. We verify the validity of our average measure in a simulated data set as well in an illustrative example with data about air pollution.  相似文献   

10.
Conventional multiclass conditional probability estimation methods, such as Fisher's discriminate analysis and logistic regression, often require restrictive distributional model assumption. In this paper, a model-free estimation method is proposed to estimate multiclass conditional probability through a series of conditional quantile regression functions. Specifically, the conditional class probability is formulated as a difference of corresponding cumulative distribution functions, where the cumulative distribution functions can be converted from the estimated conditional quantile regression functions. The proposed estimation method is also efficient as its computation cost does not increase exponentially with the number of classes. The theoretical and numerical studies demonstrate that the proposed estimation method is highly competitive against the existing competitors, especially when the number of classes is relatively large.  相似文献   

11.
The composite quantile regression (CQR) has been developed for the robust and efficient estimation of regression coefficients in a liner regression model. By employing the idea of the CQR, we propose a new regression method, called composite kernel quantile regression (CKQR), which uses the sum of multiple check functions as a loss in reproducing kernel Hilbert spaces for the robust estimation of a nonlinear regression function. The numerical results demonstrate the usefulness of the proposed CKQR in estimating both conditional nonlinear mean and quantile functions.  相似文献   

12.
Quantile regression is a very important statistical tool for predictive modelling and risk assessment. For many applications, conditional quantile at different levels are estimated separately. Consequently the monotonicity of conditional quantiles can be violated when quantile regression curves cross each other. In this paper, we propose a new Bayesian multiple quantile regression based on heavy tailed distribution for non-crossing. We consider a linear quantile regression model for simultaneous Bayesian estimation of multiple quantiles based on a regularly varying assumptions. The numerical and competitive performance of the proposed method is illustrated by simulation.  相似文献   

13.
Quantile regression, including median regression, as a more completed statistical model than mean regression, is now well known with its wide spread applications. Bayesian inference on quantile regression or Bayesian quantile regression has attracted much interest recently. Most of the existing researches in Bayesian quantile regression focus on parametric quantile regression, though there are discussions on different ways of modeling the model error by a parametric distribution named asymmetric Laplace distribution or by a nonparametric alternative named scale mixture asymmetric Laplace distribution. This paper discusses Bayesian inference for nonparametric quantile regression. This general approach fits quantile regression curves using piecewise polynomial functions with an unknown number of knots at unknown locations, all treated as parameters to be inferred through reversible jump Markov chain Monte Carlo (RJMCMC) of Green (Biometrika 82:711–732, 1995). Instead of drawing samples from the posterior, we use regression quantiles to create Markov chains for the estimation of the quantile curves. We also use approximate Bayesian factor in the inference. This method extends the work in automatic Bayesian mean curve fitting to quantile regression. Numerical results show that this Bayesian quantile smoothing technique is competitive with quantile regression/smoothing splines of He and Ng (Comput. Stat. 14:315–337, 1999) and P-splines (penalized splines) of Eilers and de Menezes (Bioinformatics 21(7):1146–1153, 2005).  相似文献   

14.
The estimation of extreme conditional quantiles is an important issue in different scientific disciplines. Up to now, the extreme value literature focused mainly on estimation procedures based on independent and identically distributed samples. Our contribution is a two-step procedure for estimating extreme conditional quantiles. In a first step nonextreme conditional quantiles are estimated nonparametrically using a local version of [Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33–50.] regression quantile methodology. Next, these nonparametric quantile estimates are used as analogues of univariate order statistics in procedures for extreme quantile estimation. The performance of the method is evaluated for both heavy tailed distributions and distributions with a finite right endpoint using a small sample simulation study. A bootstrap procedure is developed to guide in the selection of an optimal local bandwidth. Finally the procedure is illustrated in two case studies.  相似文献   

15.
Quantile regression (QR) is becoming increasingly popular due to its relevance in many scientific investigations. There is a great amount of work about linear and nonlinear QR models. Specifically, nonparametric estimation of the conditional quantiles received particular attention, due to its model flexibility. However, nonparametric QR techniques are limited in the number of covariates. Dimension reduction offers a solution to this problem by considering low-dimensional smoothing without specifying any parametric or nonparametric regression relation. The existing dimension reduction techniques focus on the entire conditional distribution. We, on the other hand, turn our attention to dimension reduction techniques for conditional quantiles and introduce a new method for reducing the dimension of the predictor $$\mathbf {X}$$. The novelty of this paper is threefold. We start by considering a single index quantile regression model, which assumes that the conditional quantile depends on $$\mathbf {X}$$ through a single linear combination of the predictors, then extend to a multi-index quantile regression model, and finally, generalize the proposed methodology to any statistical functional of the conditional distribution. The performance of the methodology is demonstrated through simulation examples and real data applications. Our results suggest that this method has a good finite sample performance and often outperforms the existing methods.  相似文献   

16.
This paper considers quantile regression for a wide class of time series models including autoregressive and moving average (ARMA) models with asymmetric generalized autoregressive conditional heteroscedasticity errors. The classical mean‐variance models are reinterpreted as conditional location‐scale models so that the quantile regression method can be naturally geared into the considered models. The consistency and asymptotic normality of the quantile regression estimator is established in location‐scale time series models under mild conditions. In the application of this result to ARMA‐generalized autoregressive conditional heteroscedasticity models, more primitive conditions are deduced to obtain the asymptotic properties. For illustration, a simulation study and a real data analysis are provided.  相似文献   

17.
Consider the nonparametric heteroscedastic regression model Y=m(X)+σ(X)?, where m(·) is an unknown conditional mean function and σ(·) is an unknown conditional scale function. In this paper, the limit distribution of the quantile estimate for the scale function σ(X) is derived. Since the limit distribution depends on the unknown density of the errors, an empirical likelihood ratio statistic based on quantile estimator is proposed. This statistics is used to construct confidence intervals for the variance function. Under certain regularity conditions, it is shown that the quantile estimate of the scale function converges to a Brownian motion and the empirical likelihood ratio statistic converges to a chi-squared random variable. Simulation results demonstrate the superiority of the proposed method over the least squares procedure when the underlying errors have heavy tails.  相似文献   

18.
Abstract.  We consider non-parametric additive quantile regression estimation by kernel-weighted local linear fitting. The estimator is based on localizing the characterization of quantile regression as the minimizer of the appropriate 'check function'. A backfitting algorithm and a heuristic rule for selecting the smoothing parameter are explored. We also study the estimation of average-derivative quantile regression under the additive model. The techniques are illustrated by a simulated example and a real data set.  相似文献   

19.
Quantile regression provides a flexible platform for evaluating covariate effects on different segments of the conditional distribution of response. As the effects of covariates may change with quantile level, contemporaneously examining a spectrum of quantiles is expected to have a better capacity to identify variables with either partial or full effects on the response distribution, as compared to focusing on a single quantile. Under this motivation, we study a general adaptively weighted LASSO penalization strategy in the quantile regression setting, where a continuum of quantile index is considered and coefficients are allowed to vary with quantile index. We establish the oracle properties of the resulting estimator of coefficient function. Furthermore, we formally investigate a Bayesian information criterion (BIC)-type uniform tuning parameter selector and show that it can ensure consistent model selection. Our numerical studies confirm the theoretical findings and illustrate an application of the new variable selection procedure.  相似文献   

20.
Many different methods have been proposed to construct nonparametric estimates of a smooth regression function, including local polynomial, (convolution) kernel and smoothing spline estimators. Each of these estimators uses a smoothing parameter to control the amount of smoothing performed on a given data set. In this paper an improved version of a criterion based on the Akaike information criterion (AIC), termed AICC, is derived and examined as a way to choose the smoothing parameter. Unlike plug-in methods, AICC can be used to choose smoothing parameters for any linear smoother, including local quadratic and smoothing spline estimators. The use of AICC avoids the large variability and tendency to undersmooth (compared with the actual minimizer of average squared error) seen when other 'classical' approaches (such as generalized cross-validation (GCV) or the AIC) are used to choose the smoothing parameter. Monte Carlo simulations demonstrate that the AICC-based smoothing parameter is competitive with a plug-in method (assuming that one exists) when the plug-in method works well but also performs well when the plug-in approach fails or is unavailable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号