首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We consider a partially linear model in which the vector of coefficients β in the linear part can be partitioned as ( β 1, β 2) , where β 1 is the coefficient vector for main effects (e.g. treatment effect, genetic effects) and β 2 is a vector for ‘nuisance’ effects (e.g. age, laboratory). In this situation, inference about β 1 may benefit from moving the least squares estimate for the full model in the direction of the least squares estimate without the nuisance variables (Steinian shrinkage), or from dropping the nuisance variables if there is evidence that they do not provide useful information (pretesting). We investigate the asymptotic properties of Stein‐type and pretest semiparametric estimators under quadratic loss and show that, under general conditions, a Stein‐type semiparametric estimator improves on the full model conventional semiparametric least squares estimator. The relative performance of the estimators is examined using asymptotic analysis of quadratic risk functions and it is found that the Stein‐type estimator outperforms the full model estimator uniformly. By contrast, the pretest estimator dominates the least squares estimator only in a small part of the parameter space, which is consistent with the theory. We also consider an absolute penalty‐type estimator for partially linear models and give a Monte Carlo simulation comparison of shrinkage, pretest and the absolute penalty‐type estimators. The comparison shows that the shrinkage method performs better than the absolute penalty‐type estimation method when the dimension of the β 2 parameter space is large.  相似文献   

2.
This note extends some results on homogeneous linear estimators to the general, even nonlinear case.A Sufficient condition for the difference of mean square error matrices of minimum conditional mean square error estimator and minimum average risk linear estimator to be postive definite is derived.  相似文献   

3.
We consider the problem of estimating the mean of a multivariate distribution. As a general alternative to penalized least squares estimators, we consider minimax estimators for squared error over a restricted parameter space where the restriction is determined by the penalization term. For a quadratic penalty term, the minimax estimator among linear estimators can be found explicitly. It is shown that all symmetric linear smoothers with eigenvalues in the unit interval can be characterized as minimax linear estimators over a certain parameter space where the bias is bounded. The minimax linear estimator depends on smoothing parameters that must be estimated in practice. Using results in Kneip (1994), this can be done using Mallows' C L -statistic and the resulting adaptive estimator is now asymptotically minimax linear. The minimax estimator is compared to the penalized least squares estimator both in finite samples and asymptotically.  相似文献   

4.
In this article, we introduce a semiparametric ridge regression estimator for the vector-parameter in a partial linear model. It is also assumed that some additional artificial linear restrictions are imposed to the whole parameter space and the errors are dependent. This estimator is a generalization of the well-known restricted least-squares estimator and is confined to the (affine) subspace which is generated by the restrictions. Asymptotic distributional bias and risk are also derived and the comparison result is then given.  相似文献   

5.
The authors consider the estimation of linear functions of a multivariate parameter under orthant restrictions. These restrictions are considered both for location models and for the Poisson distribution. For these models, situations are characterized for which the restricted maximum likelihood estimator dominates the unrestricted one for the estimation of any linear function of the parameter. The results obtained point directly to the importance of the dimension of the parameter space, the central direction of the cone and its vertex in these cases. Special attention is given to examples, such as the one‐way analysis of variance, where the estimation of individual interesting linear functions of the parameter, as the coordinates and the differences between them, is also treated.  相似文献   

6.
In this paper, we develop marginal analysis methods for longitudinal data under partially linear models. We employ the pretest and shrinkage estimation procedures to estimate the mean response parameters as well as the association parameters, which may be subject to certain restrictions. We provide the analytic expressions for the asymptotic biases and risks of the proposed estimators, and investigate their relative performance to the unrestricted semiparametric least-squares estimator (USLSE). We show that if the dimension of association parameters exceeds two, the risk of the shrinkage estimators is strictly less than that of the USLSE in most of the parameter space. On the other hand, the risk of the pretest estimator depends on the validity of the restrictions of association parameters. A simulation study is conducted to evaluate the performance of the proposed estimators relative to that of the USLSE. A real data example is applied to illustrate the practical usefulness of the proposed estimation procedures.  相似文献   

7.
Kurt Hoffmann 《Statistics》2013,47(4):425-438
In this paper the admissibility of a linear estimator for a linear regression parameter is characterized for such cases, where the considered parameter varies in an ellipsoid. We obtain a certain subset of the set of all linear estimators which are admissible with respect to the unrestricted parameter set. Furthermore, various linear estimators which have been proposed for improving the least squares estimator in cases of a restricted parameter set are investigated for admissibility. It turns out that only some shrunken estimators and some estimators of ridge type are admissible, whereas the KUKS-OLMAN estimator and all estimators of MARQUARDT type can be improved.  相似文献   

8.
Article: 2     
Summary. Searching for an effective dimension reduction space is an important problem in regression, especially for high dimensional data. We propose an adaptive approach based on semiparametric models, which we call the (conditional) minimum average variance estimation (MAVE) method, within quite a general setting. The MAVE method has the following advantages. Most existing methods must undersmooth the nonparametric link function estimator to achieve a faster rate of consistency for the estimator of the parameters (than for that of the nonparametric function). In contrast, a faster consistency rate can be achieved by the MAVE method even without undersmoothing the nonparametric link function estimator. The MAVE method is applicable to a wide range of models, with fewer restrictions on the distribution of the covariates, to the extent that even time series can be included. Because of the faster rate of consistency for the parameter estimators, it is possible for us to estimate the dimension of the space consistently. The relationship of the MAVE method with other methods is also investigated. In particular, a simple outer product gradient estimator is proposed as an initial estimator. In addition to theoretical results, we demonstrate the efficacy of the MAVE method for high dimensional data sets through simulation. Two real data sets are analysed by using the MAVE approach.  相似文献   

9.
This paper treats an abstract parametric family of symmetric linear estimators for the mean vector of a standard linear model. The estimator in this family that has smallest estimated quadratic risk is shown to attain, asymptotically, the smallest risk achievable over all candidate estimators in the family. The asymptotic analysis is carried out under a strong Gauss–Markov form of the linear model in which the dimension of the regression space tends to infinity. Leading examples to which the results apply include: (a) penalized least squares fits constrained by multiple, weighted, quadratic penalties; and (b) running, symmetrically weighted, means. In both instances, the weights define a parameter vector whose natural domain is a continuum.  相似文献   

10.
In this article, a generalized restricted difference-based ridge estimator is defined for the vector parameter in a partial linear model when the errors are dependent. It is suspected that some additional linear constraints may hold on to the whole parameter space. The estimator is a generalization of the well-known restricted least-squares estimator and is confined to the (affine) subspace which is generated by the restrictions. The risk functions of the proposed estimators are derived under balanced loss function. Finally, the performance of the new estimators is evaluated by a simulated data set.  相似文献   

11.
In the simultaneous estimation of multinomial proportions, two estimators are developed which incorporate prior means and a prior parameter which reflects the accuracy of the prior means. These estimators possess substantially smaller risk than the standard estimator in a region of the parameter space and are much more robust than the conjugate Bayes estimator with respect to parameter values far from the prior mean. When vague prior information is available, these estimators and confidence regions derived from them appear to be attractive alternatives to the procedures based on the standard estimator.  相似文献   

12.
In this paper, we analytically derive the exact formula for the mean squared error (MSE) of two weighted average (WA) estimators for each individual regression coefficient. Further, we execute numerical evaluations to investigate small sample properties of the WA estimators, and compare the MSE performance of the WA estimators with the other shrinkage estimators and the usual OLS estimator. Our numerical results show that (1) the WA estimators have smaller MSE than the other shrinkage estimators and the OLS estimator over a wide region of parameter space; (2) the range where the relative MSE of the WA estimator is smaller than that of the OLS estimator gets narrower as the number of explanatory variables k increases.  相似文献   

13.
Jing Yang  Fang Lu  Hu Yang 《Statistics》2013,47(6):1193-1211
The outer product of gradients (OPG) estimation procedure based on least squares (LS) approach has been presented by Xia et al. [An adaptive estimation of dimension reduction space. J Roy Statist Soc Ser B. 2002;64:363–410] to estimate the single-index parameter in partially linear single-index models (PLSIM). However, its asymptotic property has not been established yet and the efficiency of LS-based method can be significantly affected by outliers and heavy-tailed distributions. In this paper, we firstly derive the asymptotic property of OPG estimator developed by Xia et al. [An adaptive estimation of dimension reduction space. J Roy Statist Soc Ser B. 2002;64:363–410] in theory, and a novel robust estimation procedure combining the ideas of OPG and local rank (LR) inference is further developed for PLSIM along with its theoretical property. Then, we theoretically derive the asymptotic relative efficiency (ARE) of the proposed LR-based procedure with respect to LS-based method, which is shown to possess an expression that is closely related to that of the signed-rank Wilcoxon test in comparison with the t-test. Moreover, we demonstrate that the new proposed estimator has a great efficiency gain across a wide spectrum of non-normal error distributions and almost not lose any efficiency for the normal error. Even in the worst case scenarios, the ARE owns a lower bound equalling to 0.864 for estimating the single-index parameter and a lower bound being 0.8896 for estimating the nonparametric function respectively, versus the LS-based estimators. Finally, some Monte Carlo simulations and a real data analysis are conducted to illustrate the finite sample performance of the estimators.  相似文献   

14.
The marginal likelihood can be notoriously difficult to compute, and particularly so in high-dimensional problems. Chib and Jeliazkov employed the local reversibility of the Metropolis–Hastings algorithm to construct an estimator in models where full conditional densities are not available analytically. The estimator is free of distributional assumptions and is directly linked to the simulation algorithm. However, it generally requires a sequence of reduced Markov chain Monte Carlo runs which makes the method computationally demanding especially in cases when the parameter space is large. In this article, we study the implementation of this estimator on latent variable models which embed independence of the responses to the observables given the latent variables (conditional or local independence). This property is employed in the construction of a multi-block Metropolis-within-Gibbs algorithm that allows to compute the estimator in a single run, regardless of the dimensionality of the parameter space. The counterpart one-block algorithm is also considered here, by pointing out the difference between the two approaches. The paper closes with the illustration of the estimator in simulated and real-life data sets.  相似文献   

15.
Optimal critical values are derived for a pre-test of an inequality restriction in a model where relevant regressors are unwittingly omitted. The criterion adopted is either that of the minimum average relative risk, or that of the mini-max regret. The latter approach yields an optimal critical value which is sensitive to the degree of model mis-specification, while the former criterion always leads to the choice of the unrestricted estimator.  相似文献   

16.
Shrinkage estimators are often obtained by adjusting the usual estimator towards a target subspace to which the true parameter might belong. However, meaningful reductions in risk below the usual estimator can typically be achieved in a very small part of the parameter space. In the multivariate-normal mean estimation problem, E. George, in a series of papers, showed how multiple-shrinkage estimators (data-weighted averages of several different shrinkage estimators) can attain substantial risk reductions in a large part of the parameter space. This paper extends the multiple-shrinkage results to the case of simultaneous estimation of the means of several one-parameter exponential families. Our results are developed by using an identity similar to that of Haff and Johnson (1986). A computer simulation is reported to indicate the magnitude of reductions in risk. Our results are also applied to the problem of how to choose appropriate component variables to combine before a suitable shrinkage estimator is considered.  相似文献   

17.
In this article, the positive-rule Stein-type ridge estimator (PSRE) is introduced for the parameters in a multiple linear regression model with spherically symmetric error distributions when it is suspected that the parameter vector may be restricted to a linear manifold. The bias and quadratic risk functions of the PSRE are derived and compared with some related competing estimators in literatures. Particularly, some sufficient conditions are derived for superiority of the PSRE over the ordinary ridge estimator, the restricted ridge estimator and the preliminary test ridge estimator, respectively. Furthermore, some graphical results are provided to illustrate some of the theoretical results.  相似文献   

18.
In this paper, we consider the estimation problem of the weighted least absolute deviation (WLAD) regression parameter vector when there are some outliers or heavy-tailed errors in the response and the leverage points in the predictors. We propose the pretest and James–Stein shrinkage WLAD estimators when some of the parameters may be subject to certain restrictions. We derive the asymptotic risk of the pretest and shrinkage WLAD estimators and show that if the shrinkage dimension exceeds two, the asymptotic risk of the shrinkage WLAD estimator is strictly less than the unrestricted WLAD estimator. On the other hand, the risk of the pretest WLAD estimator depends on the validity of the restrictions on the parameters. Furthermore, we study the WLAD absolute shrinkage and selection operator (WLAD-LASSO) and compare its relative performance with the pretest and shrinkage WLAD estimators. A simulation study is conducted to evaluate the performance of the proposed estimators relative to that of the unrestricted WLAD estimator. A real-life data example using body fat study is used to illustrate the performance of the suggested estimators.  相似文献   

19.
In comparison to other experimental studies, multicollinearity appears frequently in mixture experiments, a special study area of response surface methodology, due to the constraints on the components composing the mixture. In the analysis of mixture experiments by using a special generalized linear model, logistic regression model, multicollinearity causes precision problems in the maximum-likelihood logistic regression estimate. Therefore, effects due to multicollinearity can be reduced to a certain extent by using alternative approaches. One of these approaches is to use biased estimators for the estimation of the coefficients. In this paper, we suggest the use of logistic ridge regression (RR) estimator in the cases where there is multicollinearity during the analysis of mixture experiments using logistic regression. Also, for the selection of the biasing parameter, we use fraction of design space plots for evaluating the effect of the logistic RR estimator with respect to the scaled mean squared error of prediction. The suggested graphical approaches are illustrated on the tumor incidence data set.  相似文献   

20.
Necessary and sufficient conditions for a linear estimator to dominate another linear estimator of a location parameter under the Pitman's criterion of comparison are discussed. Consequently it is demonstrated that a linear biased estimator can not dominate a linear unbiased estimator under Pitman's criterion and that the sample mean is the Closest Linear Unbiased Estimator (CLUE). It is also shown that the ridge regression estimator with a known biasing constant can not dominate the ordinary least squares estimator. If an estimator δdominates an estimator δin the average loss sense then sufficient conditions are obtained under which δis also preferred over δunder Pitman's criterion. Further we obtain sufficient conditions under which preference under the Pitman's criterion will lead to preference under the mean squared error sense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号