首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The correlation coefficient (CC) is a standard measure of a possible linear association between two continuous random variables. The CC plays a significant role in many scientific disciplines. For a bivariate normal distribution, there are many types of confidence intervals for the CC, such as z-transformation and maximum likelihood-based intervals. However, when the underlying bivariate distribution is unknown, the construction of confidence intervals for the CC is not well-developed. In this paper, we discuss various interval estimation methods for the CC. We propose a generalized confidence interval for the CC when the underlying bivariate distribution is a normal distribution, and two empirical likelihood-based intervals for the CC when the underlying bivariate distribution is unknown. We also conduct extensive simulation studies to compare the new intervals with existing intervals in terms of coverage probability and interval length. Finally, two real examples are used to demonstrate the application of the proposed methods.  相似文献   

2.
ABSTRACT

The performances of six confidence intervals for estimating the arithmetic mean of a lognormal distribution are compared using simulated data. The first interval considered is based on an exact method and is recommended in U.S. EPA guidance documents for calculating upper confidence limits for contamination data. Two intervals are based on asymptotic properties due to the Central Limit Theorem, and the other three are based on transformations and maximum likelihood estimation. The effects of departures from lognormality on the performance of these intervals are also investigated. The gamma distribution is considered to represent departures from the lognormal distribution. The average width and coverage of each confidence interval is reported for varying mean, variance, and sample size. In the lognormal case, the exact interval gives good coverage, but for small sample sizes and large variances the confidence intervals are too wide. In these cases, an approximation that incorporates sampling variability of the sample variance tends to perform better. When the underlying distribution is a gamma distribution, the intervals based upon the Central Limit Theorem tend to perform better than those based upon lognormal assumptions.  相似文献   

3.
This paper addresses the problem of constructing simultaneous confidence intervals for the cumulative distribution function of a normal distribution at several specified points. The procedure is based upon the observation of a random sample of independent observations from a normal distribution with an unknown mean and variance. A new methodology is proposed for obtaining confidence intervals with a specified overall simultaneous confidence level through the inversion of acceptance sets. Both one-sided and two-sided confidence intervals are considered. Some illustrations of the new method are provided, and comparisons are made with other approaches to the problem.  相似文献   

4.
Abstract.  The likelihood ratio statistic for testing pointwise hypotheses about the survival time distribution in the current status model can be inverted to yield confidence intervals (CIs). One advantage of this procedure is that CIs can be formed without estimating the unknown parameters that figure in the asymptotic distribution of the maximum likelihood estimator (MLE) of the distribution function. We discuss the likelihood ratio-based CIs for the distribution function and the quantile function and compare these intervals to several different intervals based on the MLE. The quantiles of the limiting distribution of the MLE are estimated using various methods including parametric fitting, kernel smoothing and subsampling techniques. Comparisons are carried out both for simulated data and on a data set involving time to immunization against rubella. The comparisons indicate that the likelihood ratio-based intervals are preferable from several perspectives.  相似文献   

5.
The Poisson–Lindley distribution is a compound discrete distribution that can be used as an alternative to other discrete distributions, like the negative binomial. This paper develops approximate one-sided and equal-tailed two-sided tolerance intervals for the Poisson–Lindley distribution. Practical applications of the Poisson–Lindley distribution frequently involve large samples, thus we utilize large-sample Wald confidence intervals in the construction of our tolerance intervals. A coverage study is presented to demonstrate the efficacy of the proposed tolerance intervals. The tolerance intervals are also demonstrated using two real data sets. The R code developed for our discussion is briefly highlighted and included in the tolerance package.  相似文献   

6.
In this paper we consider conditional inference procedures for the Pareto and power function distributions. We develop procedures for obtaining confidence intervals for the location and scale parameters as well as upper and lower n probability tolerance intervals for a proportion g, given a Type-II right censored sample from the corresponding distribution. The intervals are exact, and are obtained by conditioning on the observed values of the ancillary statistics. Since, for each distribution, the procedures assume that a shape parameter x is known, a sensitivity analysis is also carried out to see how the procedures are affected by changes in x.  相似文献   

7.
Abstract.  The plug-in solution is usually not entirely adequate for computing prediction intervals, as their coverage probability may differ substantially from the nominal value. Prediction intervals with improved coverage probability can be defined by adjusting the plug-in ones, using rather complicated asymptotic procedures or suitable simulation techniques. Other approaches are based on the concept of predictive likelihood for a future random variable. The contribution of this paper is the definition of a relatively simple predictive distribution function giving improved prediction intervals. This distribution function is specified as a first-order unbiased modification of the plug-in predictive distribution function based on the constrained maximum likelihood estimator. Applications of the results to the Gaussian and the generalized extreme-value distributions are presented.  相似文献   

8.
We discuss a new way of constructing pointwise confidence intervals for the distribution function in the current status model. The confidence intervals are based on the smoothed maximum likelihood estimator, using local smooth functional theory and normal limit distributions. Bootstrap methods for constructing these intervals are considered. Other methods to construct confidence intervals, using the non‐standard limit distribution of the (restricted) maximum likelihood estimator, are compared with our approach via simulations and real data applications.  相似文献   

9.
In this paper, we propose new asymptotic confidence intervals for extreme quantiles, that is, for quantiles located outside the range of the available data. We restrict ourselves to the situation where the underlying distribution is heavy-tailed. While asymptotic confidence intervals are mostly constructed around a pivotal quantity, we consider here an alternative approach based on the distribution of order statistics sampled from a uniform distribution. The convergence of the coverage probability to the nominal one is established under a classical second-order condition. The finite sample behavior is also examined and our methodology is applied to a real dataset.  相似文献   

10.
The generalized half-normal (GHN) distribution and progressive type-II censoring are considered in this article for studying some statistical inferences of constant-stress accelerated life testing. The EM algorithm is considered to calculate the maximum likelihood estimates. Fisher information matrix is formed depending on the missing information law and it is utilized for structuring the asymptomatic confidence intervals. Further, interval estimation is discussed through bootstrap intervals. The Tierney and Kadane method, importance sampling procedure and Metropolis-Hastings algorithm are utilized to compute Bayesian estimates. Furthermore, predictive estimates for censored data and the related prediction intervals are obtained. We consider three optimality criteria to find out the optimal stress level. A real data set is used to illustrate the importance of GHN distribution as an alternative lifetime model for well-known distributions. Finally, a simulation study is provided with discussion.  相似文献   

11.
Many lifetime distribution models have successfully served as population models for risk analysis and reliability mechanisms. The Kumaraswamy distribution is one of these distributions which is particularly useful to many natural phenomena whose outcomes have lower and upper bounds or bounded outcomes in the biomedical and epidemiological research. This article studies point estimation and interval estimation for the Kumaraswamy distribution. The inverse estimators (IEs) for the parameters of the Kumaraswamy distribution are derived. Numerical comparisons with maximum likelihood estimation and biased-corrected methods clearly indicate the proposed IEs are promising. Confidence intervals for the parameters and reliability characteristics of interest are constructed using pivotal or generalized pivotal quantities. Then, the results are extended to the stress–strength model involving two Kumaraswamy populations with different parameter values. Construction of confidence intervals for the stress–strength reliability is derived. Extensive simulations are used to demonstrate the performance of confidence intervals constructed using generalized pivotal quantities.  相似文献   

12.
This article presents the statistical inferences on Weibull parameters with the data that are progressively type II censored. The maximum likelihood estimators are derived. For incorporation of previous information with current data, the Bayesian approach is considered. We obtain the Bayes estimators under squared error loss with a bivariate prior distribution, and derive the credible intervals for the parameters of Weibull distribution. Also, the Bayes prediction intervals for future observations are obtained in the one- and two-sample cases. The method is shown to be practical, although a computer program is required for its implementation. A numerical example is presented for illustration and some simulation study are performed.  相似文献   

13.
We propose approximations to the moments, different possibilities for the limiting distributions and approximate confidence intervals for the maximum-likelihood estimator of a given parametric function when sampling from partially non-regular log-exponential models. Our results are applicable to the two-parameter exponential, power-function and Pareto distribution. Asymptotic confidence intervals for quartiles in several Pareto models have been simulated. These are compared to asymptotic intervals based on sample quartiles. Our intervals are superior since we get shorter intervals with similar coverage probability. This superiority is even assessed probabilistically. Applications to real data are included.  相似文献   

14.
A Bayesian reference analysis for determining the posterior distribution of the strength of a radiation source is performed. The only pieces of information available are the numbers of counts gathered in a gross and a background measurement along with the respective counting times and a state-of-knowledge distribution for the efficiency. This situation is addressed by combining the calculations of a “one-at-a-time” reference prior and a reference prior with partial information. The posterior distribution of the source strength obtained with the reference prior leads to credible intervals that have better frequentist coverage than corresponding intervals founded on uniform or Jeffreys’ priors.  相似文献   

15.
A compound class of zero truncated Poisson and lifetime distributions is introduced. A specialization is paved to a new three-parameter distribution, called doubly Poisson-exponential distribution, which may represent the lifetime of units connected in a series-parallel system. The new distribution can be obtained by compounding two zero truncated Poisson distributions with an exponential distribution. Among its motivations is that its hazard rate function can take different shapes such as decreasing, increasing and upside-down bathtub depending on the values of its parameters. Several properties of the new distribution are discussed. Based on progressive type-II censoring, six estimation methods [maximum likelihood, moments, least squares, weighted least squares and Bayes (under linear-exponential and general entropy loss functions) estimations] are used to estimate the involved parameters. The performance of these methods is investigated through a simulation study. The Bayes estimates are obtained using Markov chain Monte Carlo algorithm. In addition, confidence intervals, symmetric credible intervals and highest posterior density credible intervals of the parameters are obtained. Finally, an application to a real data set is used to compare the new distribution with other five distributions.  相似文献   

16.
In this paper, inference for the scale parameter of lifetime distribution of a k-unit parallel system is provided. Lifetime distribution of each unit of the system is assumed to be a member of a scale family of distributions. Maximum likelihood estimator (MLE) and confidence intervals for the scale parameter based on progressively Type-II censored sample are obtained. A β-expectation tolerance interval for the lifetime of the system is obtained. As a member of the scale family, half-logistic distribution is considered and the performance of the MLE, confidence intervals and tolerance intervals are studied using simulation.  相似文献   

17.
Exact confidence intervals for variances rely on normal distribution assumptions. Alternatively, large-sample confidence intervals for the variance can be attained if one estimates the kurtosis of the underlying distribution. The method used to estimate the kurtosis has a direct impact on the performance of the interval and thus the quality of statistical inferences. In this paper the author considers a number of kurtosis estimators combined with large-sample theory to construct approximate confidence intervals for the variance. In addition, a nonparametric bootstrap resampling procedure is used to build bootstrap confidence intervals for the variance. Simulated coverage probabilities using different confidence interval methods are computed for a variety of sample sizes and distributions. A modification to a conventional estimator of the kurtosis, in conjunction with adjustments to the mean and variance of the asymptotic distribution of a function of the sample variance, improves the resulting coverage values for leptokurtically distributed populations.  相似文献   

18.
In many engineering problems it is necessary to draw statistical inferences on the mean of a lognormal distribution based on a complete sample of observations. Statistical demonstration of mean time to repair (MTTR) is one example. Although optimum confidence intervals and hypothesis tests for the lognormal mean have been developed, they are difficult to use, requiring extensive tables and/or a computer. In this paper, simplified conservative methods for calculating confidence intervals or hypothesis tests for the lognormal mean are presented. In this paper, “conservative” refers to confidence intervals (hypothesis tests) whose infimum coverage probability (supremum probability of rejecting the null hypothesis taken over parameter values under the null hypothesis) equals the nominal level. The term “conservative” has obvious implications to confidence intervals (they are “wider” in some sense than their optimum or exact counterparts). Applying the term “conservative” to hypothesis tests should not be confusing if it is remembered that this implies that their equivalent confidence intervals are conservative. No implication of optimality is intended for these conservative procedures. It is emphasized that these are direct statistical inference methods for the lognormal mean, as opposed to the already well-known methods for the parameters of the underlying normal distribution. The method currently employed in MIL-STD-471A for statistical demonstration of MTTR is analyzed and compared to the new method in terms of asymptotic relative efficiency. The new methods are also compared to the optimum methods derived by Land (1971, 1973).  相似文献   

19.
A bootstrap based method to construct 1−α simultaneous confidence intervals for relative effects in the one-way layout is presented. This procedure takes the stochastic correlation between the test statistics into account and results in narrower simultaneous confidence intervals than the application of the Bonferroni correction. Instead of using the bootstrap distribution of a maximum statistic, the coverage of the confidence intervals for the individual comparisons are adjusted iteratively until the overall confidence level is reached. Empirical coverage and power estimates of the introduced procedure for many-to-one comparisons are presented and compared with asymptotic procedures based on the multivariate normal distribution.  相似文献   

20.
In the linear regression model, the asymptotic distributions of certain functions of confidence bounds of a class of confidence intervals for the regression parameter arc investigated. The class of confidence intervals we consider in this paper are based on the usual linear rank statistics (signed as well as unsigned). Under suitable assumptions, if the confidence intervals are based on the signed linear rank statistics, it is established that the lengths, properly normalized, of the confidence intervals converge in law to the standard normal distributions; if the confidence intervals arc based on the unsigned linear rank statistics, it is then proved that a linear function of the confidence bounds converges in law to a normal distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号