首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let л1 and л2 denote two independent gamma populations G(α1, p) and G(α2, p) respectively. Assume α(i=1,2)are unknown and the common shape parameter p is a known positive integer. Let Yi denote the sample mean based on a random sample of size n from the i-th population. For selecting the population with the larger mean, we consider, the natural rule according to which the population corresponding to the larger Yi is selected. We consider? in this paper, the estimation of M, the mean of the selected population. It is shown that the natural estimator is positively biased. We obtain the uniformly minimum variance unbiased estimator(UMVE) of M. We also consider certain subclasses of estikmators of the form c1x(1) +c1x(2) and derive admissible estimators in these classes. The minimazity of certain estimators of interest is investigated. Itis shown that p(p+1)-1x(1) is minimax and dominates the UMVUE. Also UMVUE is not minimax.  相似文献   

2.
3.
i , i = 1, 2, ..., k be k independent exponential populations with different unknown location parameters θ i , i = 1, 2, ..., k and common known scale parameter σ. Let Y i denote the smallest observation based on a random sample of size n from the i-th population. Suppose a subset of the given k population is selected using the subset selection procedure according to which the population π i is selected iff Y i Y (1)d, where Y (1) is the largest of the Y i 's and d is some suitable constant. The estimation of the location parameters associated with the selected populations is considered for the squared error loss. It is observed that the natural estimator dominates the unbiased estimator. It is also shown that the natural estimator itself is inadmissible and a class of improved estimators that dominate the natural estimator is obtained. The improved estimators are consistent and their risks are shown to be O(kn −2). As a special case, we obtain the coresponding results for the estimation of θ(1), the parameter associated with Y (1). Received: January 6, 1998; revised version: July 11, 2000  相似文献   

4.
Let π1, …, πk be k (? 2) independent populations, where πi denotes the uniform distribution over the interval (0, θi) and θi > 0 (i = 1, …, k) is an unknown scale parameter. The population associated with the largest scale parameter is called the best population. For selecting the best population, We use a selection rule based on the natural estimators of θi, i = 1, …, k, for the case of unequal sample sizes. Consider the problem of estimating the scale parameter θL of the selected uniform population when sample sizes are unequal and the loss is measured by the squared log error (SLE) loss function. We derive the uniformly minimum risk unbiased (UMRU) estimator of θL under the SLE loss function and two natural estimators of θL are also studied. For k = 2, we derive a sufficient condition for inadmissibility of an estimator of θL. Using these condition, we conclude that the UMRU estimator and natural estimator are inadmissible. Finally, the risk functions of various competing estimators of θL are compared through simulation.  相似文献   

5.
6.
Let Π1, …, Π p be p(p≥2) independent Poisson populations with unknown parameters θ1, …, θ p , respectively. Let X i denote an observation from the population Π i , 1≤ip. Suppose a subset of random size, which includes the best population corresponding to the largest (smallest) θ i , is selected using Gupta and Huang [On subset selection procedures for Poisson populations and some applications to the multinomial selection problems, in Applied Statistics, R.P. Gupta, ed., North-Holland, Amsterdam, 1975, pp. 97–109] and (Gupta et al. [On subset selection procedures for Poisson populations, Bull. Malaysian Math. Soc. 2 (1979), pp. 89–110]) selection rule. In this paper, the problem of estimating the average worth of the selected subset is considered under the squared error loss function. The natural estimator is shown to be biased and the UMVUE is obtained using Robbins [The UV method of estimation, in Statistical Decision Theory and Related Topics-IV, S.S. Gupta and J.O. Berger, eds., Springer, New York, vol. 1, 1988, pp. 265–270] UV method of estimation. The natural estimator is shown to be inadmissible, by constructing a class of dominating estimators. Using Monte Carlo simulations, the bias and risk of the natural, dominated and UMVU estimators are computed and compared.  相似文献   

7.
Let Π1,…,Πk be k populations with Πi being Pareto with unknown scale parameter αi and known shape parameter βi;i=1,…,k. Suppose independent random samples (Xi1,…,Xin), i=1,…,k of equal size are drawn from each of k populations and let Xi denote the smallest observation of the ith sample. The population corresponding to the largest Xi is selected. We consider the problem of estimating the scale parameter of the selected population and obtain the uniformly minimum variance unbiased estimator (UMVUE) when the shape parameters are assumed to be equal. An admissible class of linear estimators is derived. Further, a general inadmissibility result for the scale equivariant estimators is proved.  相似文献   

8.
In this paper, a new estimator combined estimator (CE) is proposed for estimating the finite population mean ¯ Y N in simple random sampling assuming a long-tailed symmetric super-population model. The efficiency and robustness properties of the CE is compared with the widely used and well-known estimators of the finite population mean ¯ Y N by Monte Carlo simulation. The parameter estimators considered in this study are the classical least squares estimator, trimmed mean, winsorized mean, trimmed L-mean, modified maximum-likelihood estimator, Huber estimator (W24) and the non-parametric Hodges–Lehmann estimator. The mean square error criteria are used to compare the performance of the estimators. We show that the CE is overall more efficient than the other estimators. The CE is also shown to be more robust for estimating the finite population mean ¯ Y N , since it is insensitive to outliers and to misspecification of the distribution. We give a real life example.  相似文献   

9.
ABSTRACT

Suppose independent random samples are available from k(k ≥ 2) exponential populations ∏1,…,∏ k with a common location θ and scale parameters σ1,…,σ k , respectively. Let X i and Y i denote the minimum and the mean, respectively, of the ith sample, and further let X = min{X 1,…, X k } and T i  = Y i  ? X; i = 1,…, k. For selecting a nonempty subset of {∏1,…,∏ k } containing the best population (the one associated with max{σ1,…,σ k }), we use the decision rule which selects ∏ i if T i  ≥ c max{T 1,…,T k }, i = 1,…, k. Here 0 < c ≤ 1 is chosen so that the probability of including the best population in the selected subset is at least P* (1/k ≤ P* < 1), a pre-assigned level. The problem is to estimate the average worth W of the selected subset, the arithmetic average of means of selected populations. In this article, we derive the uniformly minimum variance unbiased estimator (UMVUE) of W. The bias and risk function of the UMVUE are compared numerically with those of analogs of the best affine equivariant estimator (BAEE) and the maximum likelihood estimator (MLE).  相似文献   

10.
Independent random samples are drawn from k (≥ 2) populations, having probability density functions belonging to a general truncation parameter family. The populations associated with the smallest and the largest truncation parameters are called the lower extreme population (LEP) and the upper extreme population (UEP), respectively. For the goal of selecting the LEP (UEP), we consider the natural selection rule, which selects the population corresponding to the smallest (largest) of k maximum likelihood estimates as the LEP (UEP), and study the problem of estimating the truncation parameter of the selected population. We unify some of the existing results, available in the literature for specific distributions, by deriving the uniformly minimum variance unbiased estimator (UMVUE) for the truncation parameter of the selected population. The conditional unbiasedness of the UMVUE is also checked. The cases of the left and the right truncation parameter families are dealt with separately. Finally, we consider an application to the Pareto probability model, where the performances of the UMVUE and three other natural estimators are compared with each other, under the mean squared error criterion.  相似文献   

11.
This article deals with the estimation of R = P{X < Y}, where X and Y are independent random variables from geometric and exponential distribution, respectively. For complete samples, the MLE of R, its asymptotic distribution, and confidence interval based on it are obtained. The procedure for deriving bootstrap-p confidence interval is presented. The UMVUE of R and UMVUE of its variance are derived. The Bayes estimator of R is investigated and its Lindley's approximation is obtained. A simulation study is performed in order to compare these estimators. Finally, all point estimators for right censored sample from the exponential distribution, are obtained.  相似文献   

12.
Let Y1,…,Y n, (Y1 <Y2<…<Y n) be the order statistics of a random sample from a distribution F with density f on the realline. This paper gives a class of estimators of the derivativef'(x) of the density f at points x for which f has

a continuoussecond derivative. These estimators are based on spacings inthe order statistics Yj+kn -y j j = 1,…,n-kn,kn<n.  相似文献   

13.
Let X1, X2, …, Xn be identically, independently distributed N(i,1) random variables, where i = 0, ±1, ±2, … Hammersley (1950) showed that d = [X?n], the nearest integer to the sample mean, is the maximum likelihood estimator of i. Khan (1973) showed that d is minimax and admissible with respect to zero-one loss. This note now proves a conjecture of Stein to the effect that in the class of integer-valued estimators d is minimax and admissible under squared-error loss.  相似文献   

14.
Let Yr+1:n ≤ Y:r+2:n ≤≤… <Yn?6:n-<: TYPE-II censored sample from an extreme value population with µ and α as the location and scale parameters, respectively. Tables of coefficients for the best linear unbiased estimators (BLUEs) of µ and α are presented for various choices of censoring and sample sizes n = 2(1)15(5)30; variances and covariance of these estimators are also presented. The computational formulae and procedure used and some checks employed are explained. We finally illustrate some uses of the tables by taking examples.  相似文献   

15.
Suppose a subset of populations is selected from k exponential populations with unknown location parameters θ1, θ2, …, θk and common known scale parameter σ. We consider the estimation of the location parameter of the selected population and the average worth of the selected subset under an asymmetric LINEX loss function. We show that the natural estimator of these parameters is biased and find the uniformly minimum risk-unbiased (UMRU) estimator of these parameters. In the case of k = 2, we find the minimax estimator of the location parameter of the smallest selected population. Furthermore, we compare numerically the risk of UMRU, minimax, and the natural estimators.  相似文献   

16.
The estimation of the distribution functon of a random variable X measured with error is studied. Let the i-th observation on X be denoted by YiXii where εi is the measuremen error. Let {Yi} (i=1,2,…,n) be a sample of independent observations. It is assumed that {Xi} and {∈i} are mutually independent and each is identically distributed. As is standard in the literature for this problem, the distribution of e is assumed known in the development of the methodology. In practice, the measurement error distribution is estimated from replicate observations.

The proposed semiparametric estimator is derived by estimating the quantises of X on a set of n transformed V-values and smoothing the estimated quantiles using a spline function. The number of parameters of the spline function is determined by the data with a simple criterion, such as AIC. In a simulation study, the semiparametric estimator dominates an optimal kernel estimator and a normal mixture estimator for a wide class of densities.

The proposed estimator is applied to estimate the distribution function of the mean pH value in a field plot. The density function of the measurement error is estimated from repeated measurements of the pH values in a plot, and is treated as known for the estimation of the distribution function of the mean pH value.  相似文献   

17.
The problem is to estimate the parameter of a selected binomial population. The selction rule is to choose the population with the greatest number of successes and, in the case of a tie, to follow one of two schemes: either choose the population with the smallest index or randomize among the tied populations. Since no unbiased estimator exists in the above case, we employ a second stage of sampling and take additional observations on the selected population. We find the uniformly minimum variance unbiased estimator (UMVUE) under the first tie break scheme and we prove that no UMVUE exists under the second. We find an unbiased estimator with desirable properties in the case where no UMVUE exists.  相似文献   

18.
Let X1:, X2:, …, Xn be iidrv's with cdf F?, F?(x)=F (x-θ), R. Let T be an equivariant median-unbiased estimator of θ. Let πε(F)={G = (1 -ε) F+εH, H any cdf} and let M(G, T) be a median of T if X1 has cdf G. The oscillation of the bias of T, defined as

Bε(T)=sup (M(G1 T) :G1,G2:∈πσ:(F)} ,is considered and the estimator with the smallest B$epsi;(T) is explicitly constructed  相似文献   

19.
Let F p×phave a multivariate F distribution with a scale p×p matrix Δ and degrees of freedom k1 and k2 such that ki - p - 1 > 0, i = 1,2. The estimation of Δ under entropy and squared error loss functions are considered. In both cases a new class of orthogonally invariant estimators are obtained which dominate the best unbiased estimator.  相似文献   

20.
The problem of estimating ordered parameters is encountered in biological, agricultural, reliability and various other experiments. Consider two populations with densities f1(x11) and f2(x22) where ω12. The estimation of ω12) with the loss function, the sum of squared errors, is studied. when fi is the fi(,i,,i 2) density with ,i known, i=1,2; we obtain a class of minimax estimators. When ω12 we show some of these estimators are improved by the maximum likelihood estimator. For a general fi we give sufficient conditions for the minimaxity of the analogue of the Pitman estimator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号