首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary Letg(x) andf(x) be continuous density function on (a, b) and let {ϕj} be a complete orthonormal sequence of functions onL 2(g), which is the set of squared integrable functions weighted byg on (a, b). Suppose that over (a, b). Given a grouped sample of sizen fromf(x), the paper investigates the asymptotic properties of the restricted maximum likelihood estimator of density, obtained by setting all but the firstm of the ϑj’s equal to0. Practical suggestions are given for performing estimation via the use of Fourier and Legendre polynomial series. Research partially supported by: CNR grant, n. 93. 00837. CT10.  相似文献   

3.
Abstract

In this article, the strong uniform consistency of two nonparametric estimators for the quantile density function is established under length-biased sampling. The rate of the strong approximation of the resulting processes of these estimators will be presented as well. A Monte Carlo simulation study is carried out to compare the proposed estimators with each other in terms of mean squared errors.  相似文献   

4.
A local orthogonal polynomial expansion (LOrPE) of the empirical density function is proposed as a novel method to estimate the underlying density. The estimate is constructed by matching localised expectation values of orthogonal polynomials to the values observed in the sample. LOrPE is related to several existing methods, and generalises straightforwardly to multivariate settings. By manner of construction, it is similar to local likelihood density estimation (LLDE). In the limit of small bandwidths, LOrPE functions as kernel density estimation (KDE) with high-order (effective) kernels inherently free of boundary bias, a natural consequence of kernel reshaping to accommodate endpoints. Consistency and faster asymptotic convergence rates follow. In the limit of large bandwidths LOrPE is equivalent to orthogonal series density estimation (OSDE) with Legendre polynomials, thereby inheriting its consistency. We compare the performance of LOrPE to KDE, LLDE, and OSDE, in a number of simulation studies. In terms of mean integrated squared error, the results suggest that with a proper balance of the two tuning parameters, bandwidth and degree, LOrPE generally outperforms these competitors when estimating densities with sharply truncated supports.  相似文献   

5.
In this paper, we propose a class of distributions with the inverse linear mean residual quantile function. The distributional properties of the family of distributions are studied. We then discuss the reliability characteristics of the family of distributions. Some characterizations of the class of distributions are also discussed. The parameters of the class of distributions are estimated using the method of L-moments. The proposed class of distributions is applied to a real data set.  相似文献   

6.
B.B. Winter 《Statistics》2013,47(3):339-355
Two different approaches to the design of optimal observations networks are compared. One approach is based on the traditional experimental design theory, the other essentially uses the covariance analysis methodology of observed fields, It is found that for random fields generated by regression models with random parameters both approaches lead to similar solutions  相似文献   

7.
Abstract

The present paper introduces a new family of distributions with quadratic mean residual quantile function. Various distributional properties as well as reliability characteristics are discussed. Some characterizations of the class of distributions are presented. The estimation of parameters of the model using method of L-moments is studied. The practical application of the class of models is illustrated with a real life data set.  相似文献   

8.
It is known that for nonparametric regression, local linear composite quantile regression (local linear CQR) is a more competitive technique than classical local linear regression since it can significantly improve estimation efficiency under a class of non-normal and symmetric error distributions. However, this method only applies to symmetric errors because, without symmetric condition, the estimation bias is non-negligible and therefore the resulting estimator is inconsistent. In this paper, we propose a weighted local linear CQR method for general error conditions. This method applies to both symmetric and asymmetric random errors. Because of the use of weights, the estimation bias is eliminated asymptotically and the asymptotic normality is established. Furthermore, by minimizing asymptotic variance, the optimal weights are computed and consequently the optimal estimate (the most efficient estimate) is obtained. By comparing relative efficiency theoretically or numerically, we can ensure that the new estimation outperforms the local linear CQR estimation. Finite sample behaviors conducted by simulation studies further illustrate the theoretical findings.  相似文献   

9.
In this paper, we develop non-parametric estimation of the mean residual quantile function based on right-censored data. Two non-parametric estimators, one based on the empirical quantile function and the other using the kernel smoothing method, are proposed. Asymptotic properties of the estimators are discussed. Monte Carlo simulation studies are conducted to compare the two estimators. The method is illustrated with the aid of two real data sets.  相似文献   

10.
The present paper introduces methods of constructing quantile functions as models of lifetimes with monotone and nonmonotone hazard functions. This is accomplished on the basis of the relationships the hazard quantile function has with the score function introduced by Parzen in connection with the tail heaviness of probability distributions. Three models illustrated here contain several existing models as particular cases. The appropriateness of the models in real situations is also demonstrated.  相似文献   

11.
We propose an orthogonal series density estimator for complex surveys, where samples are neither independent nor identically distributed. The proposed estimator is proved to be design-unbiased and asymptotically design-consistent. The asymptotic normality is proved under both design and combined spaces. Two data driven estimators are proposed based on the proposed oracle estimator. We show the efficiency of the proposed estimators in simulation studies. A real survey data example is provided for an illustration.  相似文献   

12.
ABSTRACT

The log-normal (LN) kernel estimator of a density with support [0, ∞) was discussed by Jin and Kawczak (2003 Jin, X., Kawczak, J. (2003). Birnbaum–Saunders and lognormal kernel estimators for modelling durations in high frequency financial data. Ann. Econ. Finance 4:103124. [Google Scholar]). The contribution of this paper is to suggest a new class of LN kernel estimators using the idea of weighted distribution. The asymptotic properties of the new class of estimators are studied. Also, numerical studies based on both simulated and real data set are presented.  相似文献   

13.
Abstract

Using a model-assisted approach, this paper studies asymptotically design-unbiased (ADU) estimation of a population “distribution function” and extends to deriving an asymptotic and approximate unbiased estimator for a population quantile from a sample chosen with varying probabilities. The respective asymptotic standard errors and confidence intervals are then worked out. Numerical findings based on an actual data support the theory with efficient results.  相似文献   

14.
Summary.  A representation is developed that expresses the bivariate survivor function as a function of the hazard function for truncated failure time variables. This leads to a class of nonparametric survivor function estimators that avoid negative mass. The transformation from hazard function to survivor function is weakly continuous and compact differentiable, so that such properties as strong consistency, weak convergence to a Gaussian process and bootstrap applicability for a hazard function estimator are inherited by the corresponding survivor function estimator. The set of point mass assignments for a survivor function estimator is readily obtained by using a simple matrix calculation on the set of hazard rate estimators. Special cases arise from a simple empirical hazard rate estimator, and from an empirical hazard rate estimator following the redistribution of singly censored observations within strips. The latter is shown to equal van der Laan's repaired nonparametric maximum likelihood estimator, for which a Greenwood-like variance estimator is given. Simulation studies are presented to compare the moderate sample performance of various nonparametric survivor function estimators.  相似文献   

15.
In this paper, we propose robust randomized quantile regression estimators for the mean and (condition) variance functions of the popular heteroskedastic non parametric regression model. Unlike classical approaches which consider quantile as a fixed quantity, our method treats quantile as a uniformly distributed random variable. Our proposed method can be employed to estimate the error distribution, which could significantly improve prediction results. An automatic bandwidth selection scheme will be discussed. Asymptotic properties and relative efficiencies of the proposed estimators are investigated. Our empirical results show that the proposed estimators work well even for random errors with infinite variances. Various numerical simulations and two real data examples are used to demonstrate our methodologies.  相似文献   

16.
In this paper a model is proposed which represents a wide class of continuous distributions. It is shown how the parameters of this model can be estimated leading to a distribution estimator and a corresponding density estimator. An important property of this estimator is that it can be structured to reflect a priori knowledge of the unknown distribution.

Finally, some examples are shown and some comparisons made with kernel and orthogonal series estimators.  相似文献   

17.
We show that the jackknife technique fails badly when applied to the problem of estimating the variance of a sample quantile. When viewed as a point estimator, the jackknife estimator is known to be inconsistent. We show that the ratio of the jackknife variance estimate to the true variance has an asymptotic Weibull distribution with parameters 1 and 1/2. We also show that if the jackknife variance estimate is used to Studentize the sample quantile, the asymptotic distribution of the resulting Studentized statistic is markedly nonnormal, having infinite mean. This result is in stark contrast with that obtained in simpler problems, such as that of constructing confidence intervals for a mean, where the jackknife-Studentized statistic has an asymptotic standard normal distribution.  相似文献   

18.
This paper considers the nonparametric deconvolution problem when the true density function is left (or right) truncated. We propose to remove the boundary effect of the conventional deconvolution density estimator by using a special class of kernels: the deconvolution boundary kernels. Methods for constructing such kernels are provided. The mean squared error properties, including the rates of convergence, are investigated for supersmooth and ordinary smooth errors. Numerical simulations show that the deconvolution boundary kernel estimator successfully removes the boundary effects of the conventional deconvolution density estimator.  相似文献   

19.
We derive an asymptotic theory of nonparametric estimation for a time series regression model Zt=f(Xt)+Wt, where {Xt} and {Zt} are observed nonstationary processes, and {Wt} is an unobserved stationary process. The class of nonstationary processes allowed for {Xt} is a subclass of the class of null recurrent Markov chains. This subclass contains the random walk, unit root processes and nonlinear processes. The process {Wt} is assumed to be linear and stationary.  相似文献   

20.
A set of Fortran-77 subroutines is described which compute a nonparametric density estimator expressed as a Fourier series. In addition, a subroutine is given for the estimation of a cumulative distribution. Performance measures are given based on samples from a Weibull distribution. Due to small size and modest space demands, these subroutines are easily implemented on most small computers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号