首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with estimating the common hazard rate of two exponential distributions with unknown and ordered location parameters under a general class of bowl-shaped scale invariant loss functions. The inadmissibility of the best affine equivariant estimator is established by deriving an improved estimator. Another estimator is obtained which improves upon the best affine equivariant estimator. A class of improving estimators is derived using the integral expression of risk difference approach of Kubokawa [A unified approach to improving equivariant estimators. Ann Statist. 1994;22(1):290–299]. These results are applied to specific loss functions. It is further shown that these estimators can be derived for four important sampling schemes: (i) complete and i.i.d. sample, (ii) record values, (iii) type-II censoring, and (iv) progressive Type-II censoring. A simulation study is carried out for numerically comparing the risk performance of these proposed estimators.  相似文献   

2.
The least trimmed squares (LTS) estimator and the trimmed mean (TM) are two well-known trimming-based estimators of the location parameter. Both estimates are used in practice, and they are implemented in standard statistical software (e.g., S-PLUS, R, Matlab, SAS). The breakdown point of each of these estimators increases as the trimming proportion increases, while the efficiency decreases. Here we have shown that for a wide range of distributions with exponential and polynomial tails, TM is asymptotically more efficient than LTS as an estimator of the location parameter, when they have equal breakdown points.  相似文献   

3.
The empirical distribution function is known to have optimum properties as an estimator of the underlying distribution function. However, it may not be appropriate for estimating continuous distributions because of its jump discontinuities. In this paper, we consider the application of Bernstein polynomials for approximating a bounded and continuous function and show that it can be naturally adapted for smooth estimation of a distribution function concentrated on the interval [0,1] by a continuous approximation of the empirical distribution function. The smoothness of the approximating polynomial is further used in deriving a smooth estimator of the corresponding density. The asymptotic properties of the resulting estimators are investigated. Specifically, we obtain strong consistency and asymptotic normality under appropriate choice of the degree of the polynomial. The case of distributions with other compact and non-compact support can be dealt through transformations. Thus, this paper gives a general method for non-parametric density estimation as an alternative to the current estimators. A small numerical investigation shows that the estimator proposed here may be preferable to the popular kernel-density estimator.  相似文献   

4.
In this paper, we consider the family of skew generalized t (SGT) distributions originally introduced by Theodossiou [P. Theodossiou, Financial data and the skewed generalized t distribution, Manage. Sci. Part 1 44 (12) ( 1998), pp. 1650–1661] as a skew extension of the generalized t (GT) distribution. The SGT distribution family warrants special attention, because it encompasses distributions having both heavy tails and skewness, and many of the widely used distributions such as Student's t, normal, Hansen's skew t, exponential power, and skew exponential power (SEP) distributions are included as limiting or special cases in the SGT family. We show that the SGT distribution can be obtained as the scale mixture of the SEP and generalized gamma distributions. We investigate several properties of the SGT distribution and consider the maximum likelihood estimation of the location, scale, and skewness parameters under the assumption that the shape parameters are known. We show that if the shape parameters are estimated along with the location, scale, and skewness parameters, the influence function for the maximum likelihood estimators becomes unbounded. We obtain the necessary conditions to ensure the uniqueness of the maximum likelihood estimators for the location, scale, and skewness parameters, with known shape parameters. We provide a simple iterative re-weighting algorithm to compute the maximum likelihood estimates for the location, scale, and skewness parameters and show that this simple algorithm can be identified as an EM-type algorithm. We finally present two applications of the SGT distributions in robust estimation.  相似文献   

5.

The three parameters involved are scale a , shape 𝜌 , and location s . Maximum likelihood estimators are (\hata, \hat\rho, \hats) . Using recent work on the second order variances, skewness, and kurtosis we establish the facts, that if the location parameter s is to be estimated, then the asymptotic variances only exist if 𝜌 >2, asymptotic skewness only exists if 𝜌 >3, and 2nd order variances and third order fourth central moments only exist if 𝜌 >4. The result of these limitations is that in general very large sample sizes may be needed to avoid inference problems. We also include new continued fractions for the asymptotic covariances of the maximum likelihood estimators considered.  相似文献   

6.
We study the behaviour of trimmed likelihood estimators (TLEs) for lifetime models with exponential or lognormal distributions possessing a linear or nonlinear link function. In particular, we investigate the difference between two possible definitions for the TLE, one called original trimmed likelihood estimator (OTLE) and one called modified trimmed likelihood estimator (MTLE) which is the finite sample version of a form for location and linear regression used by Bednarski and Clarke [Trimmed likelihood estimation of location and scale of the normal distribution. Aust J Statist. 1993;35:141–153, Asymptotics for an adaptive trimmed likelihood location estimator. Statistics. 2002;36:1–8] and Bednarski et al. [Adaptive trimmed likelihood estimation in regression. Discuss Math Probab Stat. 2010;30:203–219]. The OTLE is always an MTLE but the MTLE may not be unique even in cases where the OLTE is unique. We compare especially the functional forms of both types of estimators, characterize the difference with the implicit function theorem and indicate situations where they coincide and where they do not coincide. Since the functional form of the MTLE has a simpler form, we use it then for deriving the influence function, again with the help of the implicit function theorem. The derivation of the influence function for the functional form of the OTLE is similar but more complicated.  相似文献   

7.
Selected Ranked Set Sampling   总被引:1,自引:0,他引:1  
This paper proposes a sampling procedure called selected ranked set sampling (SRSS), in which only selected observations from a ranked set sample (RSS) are measured. This paper describes the optimal linear estimation of location and scale parameters based on SRSS, and for some distributions it presents the required tables for optimal selections. For these distributions, the optimal SRSS estimators are compared with the other popular simple random sample (SRS) and RSS estimators. In every situation the estimators based on SRSS are found advantageous at least in some respect, compared to those obtained from SRS or RSS. The SRSS method with errors in ranking is also described. The relative precision of the estimator of the population mean is investigated for different degrees of correlations between the actual and erroneous ranking. The paper reports the minimum value of the correlation coefficient between the actual and the erroneous ranking required for achieving better precision with respect to the usual SRS estimator and with respect to the RSS estimator.  相似文献   

8.
The Maximum Likelihood (ML) and Best Linear Unbiased (BLU) estimators of the location and scale parameters of an extreme value distribution (Lawless [1982]) are compared under conditions of small sample sizes and Type I censorship. The comparisons were made in terms of the mean square error criterion. According to this criterion, the ML estimator of σ in the case of very small sample sizes (n < 10) and heavy censorship (low censoring time) proved to be more efficient than the corresponding BLU estimator. However, the BLU estimator for σ attains parity with the corresponding ML estimator when the censoring time increases even for sample sizes as low as 10. The BLU estimator of σ attains equivalence with the ML estimator when the sample size increases above 10, particularly when the censoring time is also increased. The situation is reversed when it came to estimating the location parameter μ, as the BLU estimator was found to be consistently more efficient than the ML estimator despite the improved performance of the ML estimator when the sample size increases. However, computational ease and convenience favor the ML estimators.  相似文献   

9.
In this paper, a new estimator for estimating the proportion of a potentially sensitive attribute in survey sampling has been introduced. The proposed estimator makes use of higher order moments of the scrambling variable at the estimation stage. The proposed estimator has been found to be more efficient than the estimator due to Kuk [1990. Asking sensitive questions indirectly. Biomerika 77(2), 436–438] and Franklin [1989. A comparison of estimators for randomized response sampling with continuous distributions from a dichotomous population. Comm. Statist. Theory Methods 18, 489–505] type estimators in randomized response sampling. Recently, Guerriero and Sandri [2007. A note on the comparison of some randomized response procedures. J. Statist. Plann. Inference 137, 2184–2190] have shown that the family of randomized response models proposed by Kuk [1990. Asking sensitive questions indirectly. Biomerika 77(2), 436–438] is better than the Simmons’ family in terms of efficiency and protection.  相似文献   

10.
This paper considers the problem of estimating the probability P = Pr(X < Y) when X and Y are independent exponential random variables with unequal scale parameters and a common location parameter. Uniformly minimum variance unbiased estimator of P is obtained. The asymptotic distribution of the maximum likelihood estimator is obtained and then the asymptotic equivalence of the two estimators is established. Performance of the two estimators for moderate sample sizes is studied by Monte Carlo simulation. An approximate interval estimator is also obtained.  相似文献   

11.
Abstract

In this paper, we introduce a class of location and scale estimators for the p-variate lognormal distribution. These estimators are obtained by applying a log transform to the data, computing robust Fisher consistent estimators for the obtained Gaussian data and transforming those estimators for the lognormal using the relationship between the parameters of both distributions. We prove some of the properties of these estimators, such as Fisher consistency, robustness and asymptotic normality.  相似文献   

12.
Simultaneous robust estimates of location and scale parameters are derived from a class of M-estimating equations. A coefficient p ( p > 0), which plays a role similar to that of a tuning constant in the theory of M-estimation, determines the estimating equations. These estimating equations may be obtained as the gradient of a strictly convex criterion function. This article shows that the estimators are uniquely defined, asymptotically bi-variate normal and have positive breakdown for some choices of p . When p = 0.12 and p = 0.3, the estimators are almost fully efficient for normal and exponential distributions: efficiencies with respect to the maximum likelihood estimators are 1.00 and 0.99, respectively. It is shown that the location estimator for known scale has the maximum breakdown point 0.5 independent of p , when the target model is symmetric. Also it is shown that the scale estimator has a positive breakdown point which depends on the choice of p . A simulation study finds that the proposed location estimator has smaller variance than the Hodges–Lehmann estimator, Huber's minimax and bisquare M-estimators.  相似文献   

13.

Among the most well known estimators of multivariate location and scatter is the Minimum Volume Ellipsoid (MVE). Many algorithms have been proposed to compute it. Most of these attempt merely to approximate as close as possible the exact MVE, but some of them led to the definition of new estimators which maintain the properties of robustness and affine equivariance that make the MVE so attractive. Rousseeuw and van Zomeren (1990) used the <$>(p+1)<$>- subset estimator which was modified by Croux and Haesbroeck (1997) to give rise to the averaged <$>(p+1)<$>- subset estimator . This note shows by means of simulations that the averaged <$>(p+1)<$>-subset estimator outperforms the exact estimator as far as finite-sample efficiency is concerned. We also present a new robust estimator for the MVE, closely related to the averaged <$>(p+1)<$>-subset estimator, but yielding a natural ranking of the data.  相似文献   

14.
This paper proposes an adaptive estimator that is more precise than the ordinary least squares estimator if the distribution of random errors is skewed or has long tails. The adaptive estimates are computed using a weighted least squares approach with weights based on the lengths of the tails of the distribution of residuals. Smaller weights are assigned to those observations that have residuals in the tails of long-tailed distributions and larger weights are assigned to observations having residuals in the tails of short-tailed distributions. Monte Carlo methods are used to compare the performance of the proposed estimator and the performance of the ordinary least squares estimator. The estimates that were studied in this simulation include the difference between the means of two populations, the mean of a symmetric distribution, and the slope of a regression line. The adaptive estimators are shown to have lower mean squared errors than those for the ordinary least squares estimators for short-tailed, long-tailed, and skewed distributions, provided the sample size is at least 20. The ordinary least squares estimator has slightly lower mean squared error for normally distributed errors. The adaptive estimator is recommended for general use for studies having sample sizes of at least 20 observations unless the random errors are known to be normally distributed.  相似文献   

15.
Abstract

Examining the robustness properties of maximum likelihood (ML) estimators of parameters in exponential power and generalized t distributions has been considered together. The well-known asymptotic properties of ML estimators of location, scale and added skewness parameters in these distributions are studied. The ML estimators for location, scale and scale variant (skewness) parameters are represented as an iterative reweighting algorithm (IRA) to compute the estimates of these parameters simultaneously. The artificial data are generated to examine performance of IRA for ML estimators of parameters simultaneously. We make a comparison between these two distributions to test the fitting performance on real data sets. The goodness of fit test and information criteria approve that robustness and fitting performance should be considered together as a key for modeling issue to have the best information from real data sets.  相似文献   

16.
Simultaneous robust estimates of location and scale parameters are derived from minimizing a minimum-distance criterion function. The criterion function measures the squared distance between the pth power (p > 0) of the empirical distribution function and the pth power of the imperfectly determined model distribution function over the real line. We show that the estimator is uniquely defined, is asymptotically bivariate normal and for p > 0.3 has positive breakdown. If the scale parameter is known, when p = 0.9 the asymptotic variance (1.0436) of the location estimator for the normal model is smaller than the asymptotic variance of the Hodges-Lehmann (HL)estimator (1.0472). Efficiencies with respect to HL and maximum-likelihood estimators (MLE) are 1.0034 and 0.9582, respectively. Similarly, if the location parameter is known, when p = 0.97 the asymptotic variance (0.6158) of the scale estimator is minimum. The efficiency with respect to the MLE is 0.8119. We show that the estimator can tolerate more corrupted observations at oo than at – for p < 1, and vice versa for p > 1.  相似文献   

17.
Estimators of percentiles of location and scale parameter distributions are optimized based on Pitman closeness and absolute risk. A median unbiased (MU) estimator and a minimum risk (MR) estimator are shown to exist within a class of estimators, and to depend upon the medians of two completely specified distributions.  相似文献   

18.
An important empirical characteristic of financial time series is that the unconditional distribution of the returns tends to possess heavy tails. This is the motivation for the particular local kernel volatility estimator proposed in this work. Whereas least-square-deviations (LSD) estimators are strongly affected by heavy-tailed distributions, the performance of least-absolute-deviations (LAD) estimators is not. This robustness to heavy tails is evidenced by the more flexible assumptions made on the distributional moments of the observable variable. The simulation examples also highlight the superior performances of the LAD estimator when compared to the LSD estimator under heavy tails conditions. The full nonparametric model is described and the asymptotic properties of the LAD estimator are derived. Extensive Monte Carlo studies strongly suggest that the LAD estimator is asymptotically adaptive to the unknown conditional first moment. The LAD estimator is also used to estimate the volatility of the S&P500 and the BOVESPA returns.  相似文献   

19.
Let X1, X2,…,Xn be independent, indentically distributed random variables with density f(x,θ) with respect to a σ-finite measure μ. Let R be a measurable set in the sample space X. The value of X is observable if X ? (X?R) and not otherwise. The number J of observable X’s is binomial, N, Q, Q = 1?P(X ? R). On the basis of J observations, it is desired to estimate N and θ. Estimators considered are conditional and unconditional maximum likelihood and modified maximum likelihood using a prior weight function to modify the likelihood before maximizing. Asymptotic expansions are developed for the [Ncirc]’s of the form [Ncirc] = N + α√N + β + op(1), where α and β are random variables. All estimators have the same α, which has mean 0, variance σ2 (a function of θ) and is asymptotically normal. Hence all are asymptotically equivalent by the usual limit distributional theory. The β’s differ and Eβ can be considered an “asymptotic bias”. Formulas are developed to compare the asymptotic biases of the various estimators. For a scale parameter family of absolutely continuous distributions with X = (0,∞) and R = (T,∞), special formuli are developed and a best estimator is found.  相似文献   

20.
In this paper, we consider non‐parametric copula inference under bivariate censoring. Based on an estimator of the joint cumulative distribution function, we define a discrete and two smooth estimators of the copula. The construction that we propose is valid for a large range of estimators of the distribution function and therefore for a large range of bivariate censoring frameworks. Under some conditions on the tails of the distributions, the weak convergence of the corresponding copula processes is obtained in l([0,1]2). We derive the uniform convergence rates of the copula density estimators deduced from our smooth copula estimators. Investigation of the practical behaviour of these estimators is performed through a simulation study and two real data applications, corresponding to different censoring settings. We use our non‐parametric estimators to define a goodness‐of‐fit procedure for parametric copula models. A new bootstrap scheme is proposed to compute the critical values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号