首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the mid 1980's many statisticians have studied methods for combining parametric and nonparametric models to improve the quality of fits in a regression problem. Notably Einsporn (1987) proposed the Model Robust Regression 1 estimate (MRRl) in which the parametric function, f, and the nonparametric functiong were combined in a straightforward fashion via the use of a mixing parameter, λ This technique was studied extensively atsmall samples and was shown to be quite effective at modeling various unusual functions. In this paper we have asymptotic results for the MRRl estimate in the case where λ is theoretically optimal, is asymptotically optimal and data driven, and is chosen with the PRESS statistic (Allen, 1971) We demonstrate that the MRRl estimate with λchosen by the PRESS statistic is slightly inferior asymptotically to the other two estimates, but, nevertheless possesses positive asymptotic qualities.  相似文献   

2.
In the multiple linear regression analysis, the ridge regression estimator and the Liu estimator are often used to address multicollinearity. Besides multicollinearity, outliers are also a problem in the multiple linear regression analysis. We propose new biased estimators based on the least trimmed squares (LTS) ridge estimator and the LTS Liu estimator in the case of the presence of both outliers and multicollinearity. For this purpose, a simulation study is conducted in order to see the difference between the robust ridge estimator and the robust Liu estimator in terms of their effectiveness; the mean square error. In our simulations, the behavior of the new biased estimators is examined for types of outliers: X-space outlier, Y-space outlier, and X-and Y-space outlier. The results for a number of different illustrative cases are presented. This paper also provides the results for the robust ridge regression and robust Liu estimators based on a real-life data set combining the problem of multicollinearity and outliers.  相似文献   

3.
4.
The authors propose a robust bounded‐influence estimator for binary regression with continuous outcomes, an alternative to logistic regression when the investigator's interest focuses on the proportion of subjects who fall below or above a cut‐off value. The authors show both theoretically and empirically that in this context, the maximum likelihood estimator is sensitive to model misspecifications. They show that their robust estimator is more stable and nearly as efficient as maximum likelihood when the hypotheses are satisfied. Moreover, it leads to safer inference. The authors compare the different estimators in a simulation study and present an analysis of hypertension on Harlem survey data.  相似文献   

5.
Robust regression has not had a great impact on statistical practice, although all statisticians are convinced of its importance. The procedures for robust regression currently available are complex, and computer intensive. With a modification of the Gaussian paradigm, taking into consideration outliers and leverage points, we propose an iteratively weighted least squares method which gives robust fits. The procedure is illustrated by applying it on data sets which have been previously used to illustrate robust regression methods.It is hoped that this simple, effective and accessible method will find its use in statistical practice.  相似文献   

6.
7.
In this paper, we study the M-estimators in the case that λF:(β)=EF:(φ(Z,β))=0 has more than one solution, We show that the numerical iterative procedures converge and that the resulting estimators are consistent and asymptotically normal. We apply them to the non-linear regression models, and then, we find an optimal M-estimate among those that have bounded gross error sensitivity.  相似文献   

8.
The authors consider the construction of weights for Generalised M‐estimation. Such weights, when combined with appropriate score functions, afford protection from biases arising through incorrectly specified response functions, as well as from natural variation. The authors obtain minimax fixed weights of the Mallows type under the assumption that the density of the independent variables is correctly specified, and they obtain adaptive weights when this assumption is relaxed. A simulation study indicates that one can expect appreciable gains in precision when the latter weights are used and the various sources of model uncertainty are present.  相似文献   

9.
The bootstrap principle is justified for. robust M-estimates in regression, (A short proof justifying bootstrapping the empirical process is also given.)  相似文献   

10.
Simultaneous robust estimates of location and scale parameters are derived from a class of M-estimating equations. A coefficient p ( p > 0), which plays a role similar to that of a tuning constant in the theory of M-estimation, determines the estimating equations. These estimating equations may be obtained as the gradient of a strictly convex criterion function. This article shows that the estimators are uniquely defined, asymptotically bi-variate normal and have positive breakdown for some choices of p . When p = 0.12 and p = 0.3, the estimators are almost fully efficient for normal and exponential distributions: efficiencies with respect to the maximum likelihood estimators are 1.00 and 0.99, respectively. It is shown that the location estimator for known scale has the maximum breakdown point 0.5 independent of p , when the target model is symmetric. Also it is shown that the scale estimator has a positive breakdown point which depends on the choice of p . A simulation study finds that the proposed location estimator has smaller variance than the Hodges–Lehmann estimator, Huber's minimax and bisquare M-estimators.  相似文献   

11.
For boundary problems present in wavelet regression, two common methods are usually considered: polynomial wavelet regression (PWR) and hybrid local polynomial wavelet regression (LPWR). Normality assumption played a key role for making such choices for the order of the low-order polynomial, the wavelet thresholding value and other calculations involved in LPWR. However, in practice, the normality assumption may not be valid. In this paper, for PWR, we propose three automatic robust methods based on: MM-estimator, bootstrap and robust threshold procedure. For LPWR, the use of a robust local polynomial (RLP) estimator with a robust threshold procedure has been investigated. The proposed methods do not require any knowledge of noise distribution, are easy to implement and achieve high performances when only a small amount of data is in hand. A simulation study is conducted to assess the numerical performance of the proposed methods.  相似文献   

12.
13.
The extreme value theory is very popular in applied sciences including finance, economics, hydrology and many other disciplines. In univariate extreme value theory, we model the data by a suitable distribution from the general max-domain of attraction characterized by its tail index; there are three broad classes of tails—the Pareto type, the Weibull type and the Gumbel type. The simplest and most common estimator of the tail index is the Hill estimator that works only for Pareto type tails and has a high bias; it is also highly non-robust in presence of outliers with respect to the assumed model. There have been some recent attempts to produce asymptotically unbiased or robust alternative to the Hill estimator; however all the robust alternatives work for any one type of tail. This paper proposes a new general estimator of the tail index that is both robust and has smaller bias under all the three tail types compared to the existing robust estimators. This essentially produces a robust generalization of the estimator proposed by Matthys and Beirlant (Stat Sin 13:853–880, 2003) under the same model approximation through a suitable exponential regression framework using the density power divergence. The robustness properties of the estimator are derived in the paper along with an extensive simulation study. A method for bias correction is also proposed with application to some real data examples.  相似文献   

14.
A fast routine for converting regression algorithms into corresponding orthogonal regression (OR) algorithms was introduced in Ammann and Van Ness (1988). The present paper discusses the properties of various ordinary and robust OR procedures created using this routine. OR minimizes the sum of the orthogonal distances from the regression plane to the data points. OR has three types of applications. First, L 2 OR is the maximum likelihood solution of the Gaussian errors-in-variables (EV) regression problem. This L 2 solution is unstable, thus the robust OR algorithms created from robust regression algorithms should prove very useful. Secondly, OR is intimately related to principal components analysis. Therefore, the routine can also be used to create L 1, robust, etc. principal components algorithms. Thirdly, OR treats the x and y variables symmetrically which is important in many modeling problems. Using Monte Carlo studies this paper compares the performance of standard regression, robust regression, OR, and robust OR on Gaussian EV data, contaminated Gaussian EV data, heavy-tailed EV data, and contaminated heavy-tailed EV data.  相似文献   

15.
The least-squares regression estimator can be very sensitive in the presence of multicollinearity and outliers in the data. We introduce a new robust estimator based on the MM estimator. By considering weights, also the resulting MM-Liu estimator is highly robust, but also the estimation of the biasing parameter is robustified. Also for high-dimensional data, a robust Liu-type estimator is introduced, based on the Partial Robust M-estimator. Simulation experiments and a real dataset show the advantages over the standard estimators and other robustness proposals.  相似文献   

16.
Graphical methods of diagnostic regression analysis are applied to three examples in which least squares and robust regression analyses give substantially different results. The diagnostic tools lead to the identification of data deficiencies and model inadequacies. The analyses serve as a reminder that robust regressions depend upon the linear model and upon the scale in whicli the response is analysed. The robust analysis may also be sensitive to gross errors in one or more explanatory variables  相似文献   

17.
Ordinal regression is used for modelling an ordinal response variable as a function of some explanatory variables. The classical technique for estimating the unknown parameters of this model is Maximum Likelihood (ML). The lack of robustness of this estimator is formally shown by deriving its breakdown point and its influence function. To robustify the procedure, a weighting step is added to the Maximum Likelihood estimator, yielding an estimator with bounded influence function. We also show that the loss in efficiency due to the weighting step remains limited. A diagnostic plot based on the Weighted Maximum Likelihood estimator allows to detect outliers of different types in a single plot.  相似文献   

18.
A robust regression methodology is proposed via M-estimation. The approach adapts to the tail behavior and skewness of the distribution of the random error terms, providing for a reliable analysis under a broad class of distributions. This is accomplished by allowing the objective function, used to determine the regression parameter estimates, to be selected in a data driven manner. The asymptotic properties of the proposed estimator are established and a numerical algorithm is provided to implement the methodology. The finite sample performance of the proposed approach is exhibited through simulation and the approach was used to analyze two motivating datasets.  相似文献   

19.
Both the least squares estimator and M-estimators of regression coefficients are susceptible to distortion when high leverage points occur among the predictor variables in a multiple linear regression model. In this article a weighting scheme which enables one to bound the leverage values of a weighted matrix of predictor variables is proposed. Bounded-leverage weighting of the predictor variables followed by M-estimation of the regression coefficients is shown to be effective in protecting against distortion due to extreme predictor-variable values, extreme response values, or outlier-induced multieollinearites. Bounded-leverage estimators can also protect against distortion by small groups of high leverage points.  相似文献   

20.
This paper provides a summary of the influence function approach to robust estimation of parametric models. Hampel's optimality results for M-estimators with a bounded influence function is generalized to allow for arbitrary choices of the asymptotic efficiency criterion and the norm of the influence function. Further extensions to other cases of practical interest are also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号