首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The authors show how to extend univariate mixture autoregressive models to a multivariate time series context. Similar to the univariate case, the multivariate model consists of a mixture of stationary or nonstationary autoregressive components. The authors give the first and second order stationarity conditions for a multivariate case up to order 2. They also derive the second order stationarity condition for the univariate mixture model up to arbitrary order. They describe an EM algorithm for estimation, as well as a diagnostic checking procedure. They study the performance of their method via simulations and include a real application.  相似文献   

2.
Asymmetric behaviour in both mean and variance is often observed in real time series. The approach we adopt is based on double threshold autoregressive conditionally heteroscedastic (DTARCH) model with normal innovations. This model allows threshold nonlinearity in mean and volatility to be modelled as a result of the impact of lagged changes in assets and squared shocks, respectively. A methodology for building DTARCH models is proposed based on genetic algorithms (GAs). The most important structural parameters, that is regimes and thresholds, are searched for by GAs, while the remaining structural parameters, that is the delay parameters and models orders, vary in some pre-specified intervals and are determined using exhaustive search and an Asymptotic Information Criterion (AIC) like criterion. For each structural parameters trial set, a DTARCH model is fitted that maximizes the (penalized) likelihood (AIC criterion). For this purpose the iteratively weighted least squares algorithm is used. Then the best model according to the AIC criterion is chosen. Extension to the double threshold generalized ARCH (DTGARCH) model is also considered. The proposed methodology is checked using both simulated and market index data. Our findings show that our GAs-based procedure yields results that comparable to that reported in the literature and concerned with real time series. As far as artificial time series are considered, the proposed procedure seems to be able to fit the data quite well. In particular, a comparison is performed between the present procedure and the method proposed by Tsay [Tsay, R.S., 1989, Testing and modeling threshold autoregressive processes. Journal of the American Statistical Association, Theory and Methods, 84, 231–240.] for estimating the delay parameter. The former almost always yields better results than the latter. However, adopting Tsay's procedure as a preliminary stage for finding the appropriate delay parameter may save computational time specially if the delay parameter may vary in a large interval.  相似文献   

3.
The paper considers vector ARMA processes with nonstationary innovations. It is suggested that this class of models provide a very efficient framework for nonstationary problems. A generalization of the Yule-Walker equations relating the underlying process is obtained. Identification procedures are discussed. The associated prediction problem is solved using the Hilbert space approach.  相似文献   

4.
New approaches to prior specification and structuring in autoregressive time series models are introduced and developed. We focus on defining classes of prior distributions for parameters and latent variables related to latent components of an autoregressive model for an observed time series. These new priors naturally permit the incorporation of both qualitative and quantitative prior information about the number and relative importance of physically meaningful components that represent low frequency trends, quasi-periodic subprocesses and high frequency residual noise components of observed series. The class of priors also naturally incorporates uncertainty about model order and hence leads in posterior analysis to model order assessment and resulting posterior and predictive inferences that incorporate full uncertainties about model order as well as model parameters. Analysis also formally incorporates uncertainty and leads to inferences about unknown initial values of the time series, as it does for predictions of future values. Posterior analysis involves easily implemented iterative simulation methods, developed and described here. One motivating field of application is climatology, where the evaluation of latent structure, especially quasi-periodic structure, is of critical importance in connection with issues of global climatic variability. We explore the analysis of data from the southern oscillation index, one of several series that has been central in recent high profile debates in the atmospheric sciences about recent apparent trends in climatic indicators.  相似文献   

5.
Cordeiro and Andrade [Transformed generalized linear models. J Stat Plan Inference. 2009;139:2970–2987] incorporated the idea of transforming the response variable to the generalized autoregressive moving average (GARMA) model, introduced by Benjamin et al. [Generalized autoregressive moving average models. J Am Stat Assoc. 2003;98:214–223], thus developing the transformed generalized autoregressive moving average (TGARMA) model. The goal of this article is to develop the TGARMA model for symmetric continuous conditional distributions with a possible nonlinear structure for the mean that enables the fitting of a wide range of models to several time series data types. We derive an iterative process for estimating the parameters of the new model by maximum likelihood and obtain a simple formula to estimate the parameter that defines the transformation of the response variable. Furthermore, we determine the moments of the original dependent variable which generalize previous published results. We illustrate the theory by means of real data sets and evaluate the results developed through simulation studies.  相似文献   

6.
ABSTRACT

This paper is concerned with properties of a transitional Markov switching autoregressive (TMSAR) model, together with its maximum-likelihood estimation and inference. We extend existing MSAR models by allowing dependence of AR parameters on hidden states at time points prior to the current time t. A stationary solution is given and expressions for the theoretical autocovariance function are derived. Two time series are analyzed and the new model outperforms two existing MSAR models in terms of maximized log-likelihood, residual correlations, and one-step-ahead forecasting performance. The new model also gives more regime changes in agreement with real events.  相似文献   

7.
A procedure is developed for the identification of autoregressive models for stationary invertible multivariate Gaussian time series. Model selection is based on either the AIC information criterion or on a statistic called CVR, cross-validatory residual sum of squares. An example is given to show that the forecasts generated by these models compare favorably with those generated by other common time series modeling techniques.  相似文献   

8.
The class of generalized autoregressive conditional heteroskedastic (GARCH) models can be used to describe the volatility with less parameters than autoregressive conditional heteroskedastic (ARCH)-type models, their distributions are heavy-tailed, with time-dependent conditional variance, and are able to model clustering of volatility. Despite all these facts, the way that GARCH models are built imposes limits on the heaviness of the tails of their unconditional distribution. The class of randomized generalized autoregressive conditional heteroskedastic (R-GARCH) models includes the ARCH and GARCH models allowing the use of stable innovations. Estimation methods and empirical analysis of R-GARCH models are the focus of this work. We present the indirect inference method to estimate the R-GARCH models, some simulations and an empirical application.  相似文献   

9.
Time series methods offer the possibility of making accurate forecasts even when the underlying structural model is unknown, by replacing the structural restrictions needed to reduce sampling error and improve forecasts with restrictions determined from the data. While there has been considerable success with relatively simple univariate time series modeling procedures, the complex interrela- tionships possible with multiple series requite more powerful techniques.Based on the insights of linear systems theory, a multivariate state space methos for both stationary and nonstationary problems is described and related to ARMA models. The states or dynamic factors of the procedure are chosen to be robust in the presence of model misspecification, in constrast to ARMA models which lack this property. In addition, by treating th emidel choice as a formal approximation problem certain new optimal properties of the procedure with respect to specification are established; in particular, it is shown that no other model of equal or smaller order fits the observed autocovariance sequence any better in the sense of a Hankel norm. Finally, in the treatment of nonstationary series, a natural decomposition into long run and short run dynamics results in easily implemented two step procedures that use characteristics of the data to identify and model trend and cycle components that correspond to cointegration and error correction models. Applications include annualo U.S. GNP and money stock growth rates, monthly California beef prices and inventories, and monthly stock prices for large retailers.  相似文献   

10.
In this paper, we introduce the class of beta seasonal autoregressive moving average (βSARMA) models for modelling and forecasting time series data that assume values in the standard unit interval. It generalizes the class of beta autoregressive moving average models [Rocha AV and Cribari-Neto F. Beta autoregressive moving average models. Test. 2009;18(3):529–545] by incorporating seasonal dynamics to the model dynamic structure. Besides introducing the new class of models, we develop parameter estimation, hypothesis testing inference, and diagnostic analysis tools. We also discuss out-of-sample forecasting. In particular, we provide closed-form expressions for the conditional score vector and for the conditional Fisher information matrix. We also evaluate the finite sample performances of conditional maximum likelihood estimators and white noise tests using Monte Carlo simulations. An empirical application is presented and discussed.  相似文献   

11.
Periodic autoregressive (PAR) models with symmetric innovations are widely used on time series analysis, whereas its asymmetric counterpart inference remains a challenge, because of a number of problems related to the existing computational methods. In this paper, we use an interesting relationship between periodic autoregressive and vector autoregressive (VAR) models to study maximum likelihood and Bayesian approaches to the inference of a PAR model with normal and skew-normal innovations, where different kinds of estimation methods for the unknown parameters are examined. Several technical difficulties which are usually complicated to handle are reported. Results are compared with the existing classical solutions and the practical implementations of the proposed algorithms are illustrated via comprehensive simulation studies. The methods developed in the study are applied and illustrate a real-time series. The Bayes factor is also used to compare the multivariate normal model versus the multivariate skew-normal model.  相似文献   

12.
We study autoregressive models for binary time series with possible changes in their parameters. A procedure for detection and testing of a single change is suggested. The limiting behavior of the test statistic is derived. The performance of the test is analyzed under the null hypothesis as well as under different alternatives via a simulation study. Application of the method to a real data set on US recession is provided as an illustration.  相似文献   

13.
A non-stationary integer-valued autoregressive model   总被引:1,自引:0,他引:1  
It is frequent to encounter a time series of counts which are small in value and show a trend having relatively large fluctuation. To handle such a non-stationary integer-valued time series with a large dispersion, we introduce a new process called integer-valued autoregressive process of order p with signed binomial thinning (INARS(p)). This INARS(p) uniquely exists and is stationary under the same stationary condition as in the AR(p) process. We provide the properties of the INARS(p) as well as the asymptotic normality of the estimates of the model parameters. This new process includes previous integer-valued autoregressive processes as special cases. To preserve integer-valued nature of the INARS(p) and to avoid difficulty in deriving the distributional properties of the forecasts, we propose a bootstrap approach for deriving forecasts and confidence intervals. We apply the INARS(p) to the frequency of new patients diagnosed with acquired immunodeficiency syndrome (AIDS) in Baltimore, Maryland, U.S. during the period of 108 months from January 1993 to December 2001.  相似文献   

14.
15.
N. Balakrishna 《Statistics》2018,52(2):288-302
This paper develops algorithms for fitting autoregressive models with symmetric stable innovations using auto-covariation function. A recursive algorithm is proposed for generalized Yule-Walker estimation of autoregressive coefficients and partial auto-covariation function. It also introduces a new information criterion, useful for consistent order selection. Applications of the proposed methods are illustrated using observations simulated from autoregressive models with symmetric stable innovations as well as by analysing a set of real data.  相似文献   

16.
The authors consider time series observations with data irregularities such as censoring due to a detection limit. Practitioners commonly disregard censored data cases which often result in biased estimates. The authors present an attractive remedy for handling autocorrelated censored data based on a class of autoregressive and moving average (ARMA) models. In particular, they introduce an imputation method well suited for fitting ARMA models in the presence of censored data. They demonstrate the effectiveness of their technique in terms of bias, efficiency, and information loss. They also describe its adaptation to a specific context of meteorological time series data on cloud ceiling height, which are measured subject to the detection limit of the recording device.  相似文献   

17.
Bivariate integer-valued time series occur in many areas, such as finance, epidemiology, business etc. In this article, we present bivariate autoregressive integer-valued time-series models, based on the signed thinning operator. Compared to classical bivariate INAR models, the new processes have the advantage to allow for negative values for both the time series and the autocorrelation functions. Strict stationarity and ergodicity of the processes are established. The moments and the autocovariance functions are determined. The conditional least squares estimator of the model parameters is considered and the asymptotic properties of the obtained estimators are derived. An analysis of a real dataset from finance and a simulation study are carried out to assess the performance of the model.  相似文献   

18.
We generalize the Gaussian mixture transition distribution (GMTD) model introduced by Le and co-workers to the mixture autoregressive (MAR) model for the modelling of non-linear time series. The models consist of a mixture of K stationary or non-stationary AR components. The advantages of the MAR model over the GMTD model include a more full range of shape changing predictive distributions and the ability to handle cycles and conditional heteroscedasticity in the time series. The stationarity conditions and autocorrelation function are derived. The estimation is easily done via a simple EM algorithm and the model selection problem is addressed. The shape changing feature of the conditional distributions makes these models capable of modelling time series with multimodal conditional distributions and with heteroscedasticity. The models are applied to two real data sets and compared with other competing models. The MAR models appear to capture features of the data better than other competing models do.  相似文献   

19.
ABSTRACT

Bootstrap-based unit root tests are a viable alternative to asymptotic distribution-based procedures and, in some cases, are preferable because of the serious size distortions associated with the latter tests under certain situations. While several bootstrap-based unit root tests exist for autoregressive moving average processes with homoskedastic errors, only one such test is available when the innovations are conditionally heteroskedastic. The details for the exact implementation of this procedure are currently available only for the first order autoregressive processes. Monte-Carlo results are also published only for this limited case. In this paper we demonstrate how this procedure can be extended to higher order autoregressive processes through a transformed series used in augmented Dickey–Fuller unit root tests. We also investigate the finite sample properties for higher order processes through a Monte-Carlo study. Results show that the proposed tests have reasonable power and size properties.  相似文献   

20.
We propose a new class of generalized multicast autoregressive (GMCAR, for short, hereafter) models indexed by a multi-casting tree where each individual produces exactly the same number of offspring. This class includes standard bifurcating autoregressive processes (BAR, cf. Cowan and Staudte (1986)) and multicast autoregressive (MCAR, cf. Hwang and Choi (2009)) models as special cases. Accommodating non-Gaussian, non-negative and count data, the class includes various models such as nonlinear autoregression, conditionally heteroscedastic process and conditional exponential family. The pathwise stationarity of the GMCAR model is discussed. A law of large numbers and a central limit theorem are established which are in turn used to derive asymptotic distributions associated with martingale estimating functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号