首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In longitudinal studies, the additive hazard model is often used to analyze covariate effects on the duration time, defined as the elapsed time between the first and the second event. In this article, we consider the situation when the first event suffers partly interval censoring and the second event suffers left truncation and right-censoring. We proposed a two-step estimation procedure for estimating the regression coefficients of the additive hazards model. A simulation study is conducted to investigate the performance of the proposed estimator. The proposed method is applied to the Centers for Disease Control acquired immune deficiency syndrome blood transfusion data.  相似文献   

2.
As direct generalization of the quantile regression for complete observed data, an estimation method for quantile regression models with interval censored data is proposed, and the property of consistency is obtained. The property of asymptotic normality is also established with a bias converging to zero, and to reduce the bias, two bias correction methods are proposed. Methods proposed in this paper do not require the censoring vectors to be identically distributed, and can be applied to models with various covariates. Simulation results show that the proposed methods work well.  相似文献   

3.
Multiple regression methods are considered for progressively right-censored inverse-Gaussian data. Maximum-likelihood estimators are derived using the EM algorithm, and their asymptotic distributional properties are presented. The methodology is demonstrated using two case illustrations, one of which involves the defective feature of the inverse-Gaussian distribution. The relationship of the methodology to regression methods for complete inverse-Gaussian samples and to other regression methods for censored survival data is discussed.  相似文献   

4.
This paper considers the multiple change-point estimation for exponential distribution with truncated and censored data by Gibbs sampling. After all the missing data of interest is filled in by some sampling methods such as rejection sampling method, the complete-data likelihood function is obtained. The full conditional distributions of all parameters are discussed. The means of Gibbs samples are taken as Bayesian estimations of the parameters. The implementation steps of Gibbs sampling are introduced in detail. Finally random simulation test is developed, and the results show that Bayesian estimations are fairly accurate.  相似文献   

5.
In this paper, we studied the uniform convergence with rates for the kernel estimator of the conditional mode function for a left truncated and right censored model. It is assumed that the lifetime observations with multivariate covariates form a stationary α-mixing sequence. Also, the asymptotic normality of the estimator is established.  相似文献   

6.
Abstract

In this paper, we focus on the left-truncated and right-censored model, and construct the local linear and Nadaraya-Watson type estimators of the conditional density. Under suitable conditions, we establish the asymptotic normality of the proposed estimators when the observations are assumed to be a stationary α-mixing sequence. Finite sample behavior of the estimators is investigated via simulations too.  相似文献   

7.
The currently existing estimation methods and goodness-of-fit tests for the Cox model mainly deal with right censored data, but they do not have direct extension to other complicated types of censored data, such as doubly censored data, interval censored data, partly interval-censored data, bivariate right censored data, etc. In this article, we apply the empirical likelihood approach to the Cox model with complete sample, derive the semiparametric maximum likelihood estimators (SPMLE) for the Cox regression parameter and the baseline distribution function, and establish the asymptotic consistency of the SPMLE. Via the functional plug-in method, these results are extended in a unified approach to doubly censored data, partly interval-censored data, and bivariate data under univariate or bivariate right censoring. For these types of censored data mentioned, the estimation procedures developed here naturally lead to Kolmogorov-Smirnov goodness-of-fit tests for the Cox model. Some simulation results are presented.  相似文献   

8.
In linear regression the structure of the hat matrix plays an important part in regression diagnostics. In this note we investigate the properties of the hat matrix for regression with censored responses in the presence of one or more explanatory variables observed without censoring. The censored points in the scatterplot are renovated to positions had they been observed without censoring in a renovation process based on Buckley-James censored regression estimators. This allows natural links to be established with the structure of ordinary least squares estimators. In particular, we show that the renovated hat matrix may be partitioned in a manner which assists in deciding whether further explanatory variables should be added to the linear model. The added variable plot for regression with censored data is developed as a diagnostic tool for this decision process.  相似文献   

9.
The authors consider the estimation of regression parameters in the context of a class of generalized proportional hazards models, termed linear transformation models, in the presence of interval‐censored data. They present an estimating equation approach whose good performance is demonstrated through simulations and which they illustrate in a few concrete cases.  相似文献   

10.
For the first time, we introduce a generalized form of the exponentiated generalized gamma distribution [Cordeiro et al. The exponentiated generalized gamma distribution with application to lifetime data, J. Statist. Comput. Simul. 81 (2011), pp. 827–842.] that is the baseline for the log-exponentiated generalized gamma regression model. The new distribution can accommodate increasing, decreasing, bathtub- and unimodal-shaped hazard functions. A second advantage is that it includes classical distributions reported in the lifetime literature as special cases. We obtain explicit expressions for the moments of the baseline distribution of the new regression model. The proposed model can be applied to censored data since it includes as sub-models several widely known regression models. It therefore can be used more effectively in the analysis of survival data. We obtain maximum likelihood estimates for the model parameters by considering censored data. We show that our extended regression model is very useful by means of two applications to real data.  相似文献   

11.
Frequently, count data obtained from dilution assays are subject to an upper detection limit, and as such, data obtained from these assays are usually censored. Also, counts from the same subject at different dilution levels are correlated. Ignoring the censoring and the correlation may provide unreliable and misleading results. Therefore, any meaningful data modeling requires that the censoring and the correlation be simultaneously addressed. Such comprehensive approaches of modeling censoring and correlation are not widely used in the analysis of dilution assays data. Traditionally, these data are analyzed using a general linear model on a logarithmic-transformed average count per subject. However, this traditional approach ignores the between-subject variability and risks, providing inconsistent results and unreliable conclusions. In this paper, we propose the use of a censored negative binomial model with normal random effects to analyze such data. This model addresses, in addition to the censoring and the correlation, any overdispersion that may be present in count data. The model is shown to be widely accessible through the use of several modern statistical software.  相似文献   

12.
We study the problem of fitting a heteroscedastic median regression model from left-truncated and right-censored data. It is demonstrated that the adapted Efron's self-consistency equation of McKeague et al. (2001) can be extended to analyze left-truncated and right-censored data. We evaluate the finite sample performance of the proposed estimators through simulation studies.  相似文献   

13.
A method for nonparametric estimation of density based on a randomly censored sample is presented. The density is expressed as a linear combination of cubic M -splines, and the coefficients are determined by pseudo-maximum-likelihood estimation (likelihood is maximized conditionally on data-dependent knots). By using regression splines (small number of knots) it is possible to reduce the estimation problem to a space of low dimension while preserving flexibility, thus striking a compromise between parametric approaches and ordinary nonparametric approaches based on spline smoothing. The number of knots is determined by the minimum AIC. Examples of simulated and real data are presented. Asymptotic theory and the bootstrap indicate that the precision and the accuracy of the estimates are satisfactory.  相似文献   

14.
ABSTRACT

A variable selection procedure based on least absolute deviation (LAD) estimation and adaptive lasso (LAD-Lasso for short) is proposed for median regression models with doubly censored data. The proposed procedure can select significant variables and estimate the parameters simultaneously, and the resulting estimators enjoy the oracle property. Simulation results show that the proposed method works well.  相似文献   

15.
This paper aims at introducing a Bayesian robust error-in-variable regression model in which the dependent variable is censored. We extend previous works by assuming a multivariate t distribution for jointly modelling the behaviour of the errors and the latent explanatory variable. Inference is done under the Bayesian paradigm. We use a data augmentation approach and develop a Markov chain Monte Carlo algorithm to sample from the posterior distributions. We run a Monte Carlo study to evaluate the efficiency of the posterior estimators in different settings. We compare the proposed model to three other models previously discussed in the literature. As a by-product we also provide a Bayesian analysis of the t-tobit model. We fit all four models to analyse the 2001 Medical Expenditure Panel Survey data.  相似文献   

16.
This paper develops a nonparametric model of the relationship between survival S and a dichotomous random variable X under the order constraint that P(X=1|S=s) is increasing (or decreasing) with s. The estimation procedure, called isotonic regression, has been studied in some depth for the case of uncensored data, but we give a methodology which is appropriate in the more general context of right, left, and interval censored data. An E-M Algorithm (Dempster et. al., 1977) is used for maximum likelihood estimation.  相似文献   

17.
The authors propose a goodness-of-fit test for parametric regression models when the response variable is right-censored. Their test compares an estimation of the error distribution based on parametric residuals to another estimation relying on nonparametric residuals. They call on a bootstrap mechanism in order to approximate the critical values of tests based on Kolmogorov-Smirnov and Cramér-von Mises type statistics. They also present the results of Monte Carlo simulations and use data from a study about quasars to illustrate their work.  相似文献   

18.
This paper is concerned with the conditional feature screening for ultra-high dimensional right censored data with some previously identified important predictors. A new model-free conditional feature screening approach, conditional correlation rank sure independence screening, has been proposed and investigated theoretically. The suggested conditional screening procedure has several desirable merits. First, it is model free, and thus robust to model misspecification. Second, it has the advantage of robustness of heavy-tailed distributions of the response and the presence of potential outliers in response. Third, it is naturally applicable to complete data when there is no censoring. Through simulation studies, we demonstrate that the proposed approach outperforms the CoxCS of Hong et al. under some circumstances. A real dataset is used to illustrate the usefulness of the proposed conditional screening method.  相似文献   

19.
In this paper, we construct a Bayes shrinkage estimator for the Rayleigh scale parameter based on censored data under the squared log error loss function. Risk-unbiased estimator is derived and its risk is computed. A Bayes shrinkage estimator is obtained when a prior point guess value is available for the scale parameter. Risk-bias of the Bayes shrinkage estimator is considered. A comparison between the proposed Bayes shrinkage estimator and the risk-unbiased estimator is provided using calculation of the relative efficiency. A numerical example is presented for illustrative and comparative purposes.  相似文献   

20.
The common approach to analyzing censored data utilizes competing risk models; a class of distribution is first chosen and then the sufficient statistics are identified! An operational Bayesian approach (Barlow 1993) for analyzing censored data would require a somewhat different methodology. In this approach, we first determine potentially observable parameters of interest. We then determine the data summaries (sufficient statistics) for these parameters. Tsai (1994) suggests that the observed sample frequency is sufficient for predicting the population frequency. Invariant probability measures (likelihoods), conditional on the parameters of interest, are then derived based on the principle of sufficiency and the principle of insufficient reason.Research partially supported by the Army Research Office (DAAL03-91-G-0046) grant to the University of California at Berkeley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号