首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper we present a class of ratio type estimators of the population mean and ratio in a finite population sample surveys with without replacement simple random sampling design, where information on an auxiliary variate x positively correlated with the main variate y is available. Large sample approximations to mean square errors (MSE) of these estimatorsare evaluated and their MSE's are compared with the MSE of the usual ratio estimator [ybar]R of [ybar] the population mean of y. It is shown that under certain conditions these estimators are more efficient than [ybar]R. When a prior knowledge of the value of thecoefficient of variation, cy, of y is at hand, ratio type estimator, say [ybar]1 of [ybar] is proposed. It is shown, under certain conditions, that [ybar]1 is more efficient than [ybar]R. When values of cy, cx and the population correlation coefficient ρ is at hand, then we have proposed another estimator, say [ybar]2 of [ybar], which is always better than [ybar]R as far as the efficiency is concerned. In fact, is [ybar] 2 is shown to be even better than [ybar]1. Finally estimators better than the usual ratio estimator [ybar]/[xbar] of [Ybar] are given.  相似文献   

2.
We present some unbiased estimators at the population mean in a finite population sample surveys with simple random sampling design where information on an auxiliary variance x positively correlated with the main variate y is available. Exact variance and unbiased estimate of the variance are computed for any sample size. These estimators are compared for their precision with the mean per unit and the ratio estimators. Modifications of the estimators are suggested to make them more precise than the mean per unit estimator or the ratio estimator regardless of the value of the population correlation coefficient between the variates x and y. Asymptotic distribution of our estimators and confidnece intervals for the population mean are also obtained.  相似文献   

3.
We consider the problem of estimating finite population variance of a study character when information on an auxiliary character is available. We define ratio- and difference-type estimators and obtain the mean-squared error of them approximately. Using a numerical study, we compare the performances of the proposed estimators with some existing variance estimators.  相似文献   

4.
In this paper we study the mean square error properties of the generalized ridge estimator. We obtain the exact and the approximate bias and the mean square error of the operational generalized ridge estimator in terms of G( ) functions. We show, among other things, that the operational generalized ridge estimator does not dominate the ordinary least squares estimator up to a certain order of approximation. Finally, we note that the iterative procedures to obtain coverging ridge estimators should be used with caution.  相似文献   

5.
We present some unbiased estimators of the population variance in a finite population sample survey using the knowledge of population variance of an auxiliary character.Exact variance expressions for the proposed estimators are obtained and compared with usual unbiased estimator and the ratio estimator envisaged by Isaki (1983). Generalization of the proposed estimator is also suggested.  相似文献   

6.
A large class of estimators is considered for the mean of a finite population using information on an auxiliary variable. It is shown that members of this class of estimators are asymptotically no more efficient than the linear regression estimator.  相似文献   

7.
This article suggests the class of estimators of population mean of study variable using various parameters related to an auxiliary variable with its properties in simple random sampling. It has been identified that the some existing estimator/classes of estimators are members of suggested class. It has been found theoretically as well as empirically that the suggested class is better than the existing methods.  相似文献   

8.
9.
This paper considers the problem of estimating the population variance S2y of the study variable y using the auxiliary information in sample surveys. We have suggested the (i) chain ratio-type estimator (on the lines of Kadilar and Cingi (2003)), (ii) chain ratio-ratio-type exponential estimator and their generalized version [on the lines of Singh and Pal (2015)] and studied their properties under large sample approximation. Conditions are obtained under which the proposed estimators are more efficient than usual unbiased estimator s2y and Isaki (1893) ratio estimator. Improved version of the suggested class of estimators is also given along with its properties. An empirical study is carried out in support of the present study.  相似文献   

10.
In the present article, we propose the generalized ratio-type and generalized ratio-exponential-type estimators for population mean in adaptive cluster sampling (ACS) under modified Horvitz-Thompson estimator. The proposed estimators utilize the auxiliary information in combination of conventional measures (coefficient of skewness, coefficient of variation, correlation coefficient, covariance, coefficient of kurtosis) and robust measures (tri-mean, Hodges-Lehmann, mid-range) to increase the efficiency of the estimators. Properties of the proposed estimators are discussed using the first order of approximation. The simulation study is conducted to evaluate the performances of the estimators. The results reveal that the proposed estimators are more efficient than competing estimators for population mean in ACS under both modified Hansen-Hurwitz and Horvitz-Thompson estimators.  相似文献   

11.
ABSTRACT

In this paper, a general class of estimators for estimating the finite population variance in successive sampling on two occasions using multi-auxiliary variables has been proposed. The expression of variance has also been derived. Further, it has been shown that the proposed general class of estimators is more efficient than the usual variance estimator and the class of variance estimators proposed by Singh et al. (2011) when we used more than one auxiliary variable. In addition, we support this with the aid of numerical illustration.  相似文献   

12.
This paper compares four estimators of the mean of the selected population from two normal populations with unknown means and common but unknown variance. The selection procedure is that the population yielding the largest sample mean is selected. The four estimators considered are invariant under both location and scale transformations. The bias and mean square errors of the four estimators are computed and compared. The conclusions are close to those reported by Dahiya ‘1974’, even for small sample sizes  相似文献   

13.
With respect to random sampling from finite population, when the correlation between the auxiliary and the main characteristics is negative, the product estimator is often used to estimate the population mean. The product estimator, however, would have a large mean-squared-error (MSE) if the coefficients of variations for these two characteristics were large and the absolute value of the correlation between them was small. In this paper, we propose a general family of modified product estimators, that include the product estimator as a special case. We provide a discussion on the reduction of the MSE by using the optimal modified product estimator that has the minimal MSE in the proposed family. In certain situations, these reductions of the MSE can be significant.  相似文献   

14.
A class of estimators for the variance of sample mean is defined and its properties are studied in case of normal population. It is identified that the usual unbiased estimator, Singh, Pandey and Hirano (1973) -type estimator and Lee (1931) estimator are particular members of the proposed class of estimators. It is found that the minimum Mean Squared Error (MSE) of the proposed class of estimators is less than that of other estimators.  相似文献   

15.
This paper gives necessary and sufficient conditions for a mixed regression estimator to be superior to another mixed estimator. The comparisons are based on the mean square error matrices of the estimators. Both estimators are allowed to be biased.  相似文献   

16.
This paper proposes a class of estimators for estimating ratio and product of two means of a finite population using information on two auxiliary characters. Asymptotic expression to terms of order 0(n-1) for bias and mean square error (MSE) of the proposed class of estimators are derived. Optimum conditions are obtained under which the proposed class of estimators has the minimum MSE. An empirical study is carried out to compare the performance of various estimators of ratio with the conventional estimators.  相似文献   

17.
Calibration of the estimators of variance   总被引:2,自引:0,他引:2  
This investigation suggests new techniques to calibrate estimators of variance. Estimators of the variance of simple mean, ratio and regression estimators under different sampling schemes are shown to be special cases of the proposed calibration techniques. The approach has more practical use due to recent advances in programming techniques and computational speed. An empirical study has been carried out to address the properties of these proposed strategies.  相似文献   

18.
This paper addresses the problem of estimating the population variance S2y of the study variable y using auxiliary information in sample surveys. We have suggested a class of estimators of the population variance S2y of the study variable y when the population variance S2x of the auxiliary variable x is known. Asymptotic expressions of bias and mean squared error (MSE) of the proposed class of estimators have been obtained. Asymptotic optimum estimators in the proposed class of estimators have also been identified along with its MSE formula. A comparison has been provided. We have further provided the double sampling version of the proposed class of estimators. The properties of the double sampling version have been provided under large sample approximation. In addition, we support the present study with aid of a numerical illustration.  相似文献   

19.
We consider the problem of estimating the error variance in a general linear model when the error distribution is assumed to be spherically symmetric, but not necessary Gaussian. In particular we study the case of a scale mixture of Gaussians including the particularly important case of the multivariate-t distribution. Under Stein's loss, we construct a class of estimators that improve on the usual best unbiased (and best equivariant) estimator. Our class has the interesting double robustness property of being simultaneously generalized Bayes (for the same generalized prior) and minimax over the entire class of scale mixture of Gaussian distributions.  相似文献   

20.
Some shrunken estimators of the normal population variance 2 are proposed and compared with the usual estimator, s2, in terms of mean squared error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号