首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Goodness of fit tests for the multiple logistic regression model   总被引:1,自引:0,他引:1  
Several test statistics are proposed for the purpose of assessing the goodness of fit of the multiple logistic regression model. The test statistics are obtained by applying a chi-square test for a contingency table in which the expected frequencies are determined using two different grouping strategies and two different sets of distributional assumptions. The null distributions of these statistics are examined by applying the theory for chi-square tests of Moore Spruill (1975) and through computer simulations. All statistics are shown to have a chi-square distribution or a distribution which can be well approximated by a chi-square. The degrees of freedom are shown to depend on the particular statistic and the distributional assumptions.

The power of each of the proposed statistics is examined for the normal, linear, and exponential alternative models using computer simulations.  相似文献   

2.
The cumulative distribution function of the non-central chi-square is very important in calculating the power function of some statistical tests. On the other hand it involves an integral which is difficult to obtain. In literature some workers discussed the evaluation and the approximation of the c.d.f. of the non-central chi-square [see references (2)]. In the present work two computational formulae for computing the cumulative distribution function of the non-central chi-square distribution are given, the first one deals with the case of any degrees of freedom (odd and even), and the second deals with the case of odd degrees of freedom. Numerical illustrations are discussed.  相似文献   

3.
Testing conditional symmetry against various alternative diagonals-parameter symmetry models often provides a point of departure in studies of square contingency tables with ordered categories. Typically, chi-square or likelihood-ratio tests are used for such purposes. Since these tests depend on the validity of asymptotic approximation, they may be inappropriate in small-sample situations where exact tests are required. In this paper, we apply the theory of UMP unbiased tests to develop a class of exact tests for conditional symmetry in small samples. Oesophageal cancer and longitudinal income data are used to illustrate the approach.  相似文献   

4.
In an article appearing in this journal, Smith, et al. (1979) reported that a beta approximation of the X2 distribution in the equiprobable case did not perform well. This brief note points out that they used the wrong moments and range in their approximation. It is suggested that when this problem is cor-rected, a beta approximation performs better than the chi-square or adjusted chi-square when k ≥ 3 and n is not too small.  相似文献   

5.
The theory of chi-square tests with data-dependent cells is applied to provide tests of fit to the family of p-variate normal distributions. The cells are bounded by hyperellipses (x-[Xbar])'S-1 (x-[Xbar]) = ci centered at the sample mean [Xbar] and having shape deter-mined by the sample covariance matrix S. The Pearson statistic with these cells is affine-invariant, has a null distribution not depending on the true mean and covariance, and has asymptotic critical points between those of x2 (M-1) and x2 (M-2) when M cells are employed. The test is insensitive to lack of symmetry, but peakedness, broad shoulders and heavy tails are easily discerned in the cell counts. Multivariate normality of logarithms of relative prices of common stocks, a common assumption in finan-cial markets theory, is studied using the statistic described here and a large data base.  相似文献   

6.
Five tests of homogeneity for a 2x(k+l) contingency table are compared using Monte Carlo techniques. For these studiesit is assumed that k becomes large in such a way that thecontingency table is sparse for 2xk of the cells, but the sample size in two of the cells remains large. The test statistics studied are: the chi-square approximation to the Pearson test statistic, the chi-square approximation to the likelihood ratio statistic, the normal approximation to Zelterman's (1984)the normal approximation to Pearson's chi-square, and the normal approximation to the likelihood ratio statistic. For the range of parameters studied the chi-square approximation to Pearson's statistic performs consistently well with regard to its size and power.  相似文献   

7.
A polychotomous logit model is defined for negative multinomial frequency counts within independent populations. An efficient estimator of the model parameters and estimator covariance matrix is given in closed form. Minimum chi-square and Wald tests are presented.  相似文献   

8.
Editor's Report     
There are two common methods for statistical inference on 2 × 2 contingency tables. One is the widely taught Pearson chi-square test, which uses the well-known χ2statistic. The chi-square test is appropriate for large sample inference, and it is equivalent to the Z-test that uses the difference between the two sample proportions for the 2 × 2 case. Another method is Fisher’s exact test, which evaluates the likelihood of each table with the same marginal totals. This article mathematically justifies that these two methods for determining extreme do not completely agree with each other. Our analysis obtains one-sided and two-sided conditions under which a disagreement in determining extreme between the two tests could occur. We also address the question whether or not their discrepancy in determining extreme would make them draw different conclusions when testing homogeneity or independence. Our examination of the two tests casts light on which test should be trusted when the two tests draw different conclusions.  相似文献   

9.
This paper investigates a new family of goodness-of-fit tests based on the negative exponential disparities. This family includes the popular Pearson's chi-square as a member and is a subclass of the general class of disparity tests (Basu and Sarkar, 1994) which also contains the family of power divergence statistics. Pitman efficiency and finite sample power comparisons between different members of this new family are made. Three asymptotic approximations of the exact null distributions of the negative exponential disparity famiiy of tests are discussed. Some numerical results on the small sample perfomance of this family of tests are presented for the symmetric null hypothesis. It is shown that the negative exponential disparity famiiy, Like the power divergence family, produces a new goodness-of-fit test statistic that can be a very attractive alternative to the Pearson's chi-square. Some numerical results suggest that, application of this test statistic, as an alternative to Pearson's chi-square, could be preferable to the I 2/3 statistic of Cressie and Read (1984) under the use of chi-square critical values.  相似文献   

10.
A Monte Carlo study was used to examine the Type I error and power values of five multivariate tests for the single-factor repeated measures model The performance of Hotelling's T2 and four nonparametric tests, including a chi-square and an F-test version of a rank-transform procedure, were investigated for different distributions, sample sizes, and numbers of repeated measures. The results indicated that both Hotellings T* and the F-test version of the rank-transform performed well, producing Type I error rates which were close to the nominal value. The chi-square version of the rank-transform test, on the other hand, produced inflated Type I error rates for every condition studied. The Hotelling and F-test version of the rank-transform procedure showed similar power for moderately-skewed distributions, but for strongly skewed distributions the F-test showed much better power. The performance of the other nonparametric tests depended heavily on sample size. Based on these results, the F-test version of the rank-transform procedure is recommended for the single-factor repeated measures model.  相似文献   

11.
The introduction of shape parameters into statistical distributions provided flexible models that produced better fit to experimental data. The Weibull and gamma families are prime examples wherein shape parameters produce more reliable statistical models than standard exponential models in lifetime studies. In the presence of many independent gamma populations, one may test equality (or homogeneity) of shape parameters. In this article, we develop two tests for testing shape parameters of gamma distributions using chi-square distributions, stochastic majorization, and Schur convexity. The first one tests hypotheses on the shape parameter of a single gamma distribution. We numerically examine the performance of this test and find that it controls Type I error rate for small samples. To compare shape parameters of a set of independent gamma populations, we develop a test that is unbiased in the sense of Schur convexity. These tests are motivated by the need to have simple, easy to use tests and accurate procedures in case of small samples. We illustrate the new tests using three real datasets taken from engineering and environmental science. In addition, we investigate the Bayes’ factor in this context and conclude that for small samples, the frequentist approach performs better than the Bayesian approach.  相似文献   

12.
Anderson and Goodman ( 1957) have obtained the likelihood ratio tests and chi-square tests for testing the hypothesis about the order of discrete time finite Markov chains, On the similar lines we have obtained likeli¬hood ratio tests and chi-square tests (asymptotic) for testing hypotheses about the order of continuous time Markov chains (MC) with finite state space.  相似文献   

13.
For a postulated common odds ratio for several 2 × 2 contingency tables one may, by conditioning on the marginals of the seperate tables, determine the exact expectation and variance of the entry in a particular cell of each table, hence for the total of such cells across all tables. This makes it feasible to determine limiting values, via single-degree-of-freedom, continuity-corrected chi-square tests on the common odds ratio–one determines lower and upper limits corresponding to just barely significant chi-square values. The Mantel-Haenszel approach can be viewed as a special application of this, but directed specifically to the case of unity for the odds ratio, for which the expectation and variance formulas are particularly simple. Computation of exact expectations and variances may be feasible only for 2 × 2 tables of limited size, but asymptotic formulas can be applied in other instances.Illustration is given for a particular set of four 2 × 2 tables in which both exact limits and limits by the proposed method could be applied, the two methods giving reasonably good agreement. Both procedures are directed at the distribution of the total over the designated cells, the proposed method treating that distribution as being asymptotically normal. Especially good agreement of proposed with exact limits could be anticipated in more asymptotic situations (overall, not for individual tables) but in practice this may not be demonstrable as the computation of exact limits is then unfeasible.  相似文献   

14.
Approximate chi-square tests for hypotheses concerning multinomial probabilities are considered in many textbooks. In this article power calculations and sample size based on power are discussed and illustrated for the three most frequently used tests of this type. Available noncentrality parameters and existing tables permit a relatively easy solution of these kinds of problems.  相似文献   

15.
We introduce the 2nd-power skewness and kurtosis, which are interesting alternatives to the classical Pearson's skewness and kurtosis, called 3rd-power skewness and 4th-power kurtosis in our terminology. We use the sample 2nd-power skewness and kurtosis to build a powerful test of normality. This test can also be derived as Rao's score test on the asymmetric power distribution, which combines the large range of exponential tail behavior provided by the exponential power distribution family with various levels of asymmetry. We find that our test statistic is asymptotically chi-squared distributed. We also propose a modified test statistic, for which we show numerically that the distribution can be approximated for finite sample sizes with very high precision by a chi-square. Similarly, we propose a directional test based on sample 2nd-power kurtosis only, for the situations where the true distribution is known to be symmetric. Our tests are very similar in spirit to the famous Jarque–Bera test, and as such are also locally optimal. They offer the same nice interpretation, with in addition the gold standard power of the regression and correlation tests. An extensive empirical power analysis is performed, which shows that our tests are among the most powerful normality tests. Our test is implemented in an R package called PoweR.  相似文献   

16.
The use of generalized inverses in Wald's-type quadratic forms of test statistics having singular normal limiting distributions does not guarantee to obtain chi-square limiting distributions. In this article, the use of {2} -inverses for that problem is investigated. Alternatively, Imhof-based test statistics can also be defined, which converge in distribution to weighted sum of chi-square variables. The asymptotic distributions of these test statistics under the null and alternative hypotheses are discussed. Under fixed and local alternatives, the asymptotic powers are compared theoretically. Simulation studies are also performed to compare the exact powers of the test statistics in finite samples. A data analysis on the temperature and precipitation variability in the European Alps illustrates the proposed methods.  相似文献   

17.
Most of the available literature on accelerated life testing deals with tests that use only one accelerating variable and no other explanatory variables. Frequently, however, there is a need to use more than one accelerating or other experimental variables. Examples include a test of capacitors at higher than usual levels of temperature and voltage, and a test of circuit boards at higher than usual levels of temperature, humidity, and voltage. M-step, step-stress models are extended to include k stress variables. Optimum M-step, step-stress designs with k stress variables are found. The polynomial model is considered as a special case, and a lack of fit test is discussed. Also a goodness-of-fit test is proposed and the appropriateness of using its asymptotic chi-square distribution for small samples is shown.  相似文献   

18.
In 1935, R.A. Fisher published his well-known “exact” test for 2x2 contingency tables. This test is based on the conditional distribution of a cell entry when the rows and columns marginal totals are held fixed. Tocher (1950) and Lehmann (1959) showed that Fisher s test, when supplemented by randomization, is uniformly most powerful among all the unbiased tests UMPU). However, since all the practical tests for 2x2 tables are nonrandomized - and therefore biased the UMPU test is not necessarily more powerful than other tests of the same or lower size. Inthis work, the two-sided Fisher exact test and the UMPU test are compared with six nonrandomized unconditional exact tests with respect to their power. In both the two-binomial and double dichotomy models, the UMPU test is often less powerful than some of the unconditional tests of the same (or even lower) size. Thus, the assertion that the Tocher-Lehmann modification of Fisher's conditional test is the optimal test for 2x2 tables is unjustified.  相似文献   

19.
Two-different types of adjustments to the power-divergence test statistics have been introduced for the problem of testing goodness-of-fit under clustered sampling. Penalization has also been introduced to handle the cells with zero frequencies. The asymptotic distribution of the proposed power-divergence test statistics has been investigated under clustered sampling and the performances of the proposed statistics for finite samples have been studied through a designed simulation study.  相似文献   

20.
Empirical likelihood ratio confidence regions based on the chi-square calibration suffer from an undercoverage problem in that their actual coverage levels tend to be lower than the nominal levels. The finite sample distribution of the empirical log-likelihood ratio is recognized to have a mixture structure with a continuous component on [0, + ∞) and a point mass at + ∞. The undercoverage problem of the Chi-square calibration is partly due to its use of the continuous Chi-square distribution to approximate the mixture distribution of the empirical log-likelihood ratio. In this article, we propose two new methods of calibration which will take advantage of the mixture structure; we construct two new mixture distributions by using the F and chi-square distributions and use these to approximate the mixture distributions of the empirical log-likelihood ratio. The new methods of calibration are asymptotically equivalent to the chi-square calibration. But the new methods, in particular the F mixture based method, can be substantially more accurate than the chi-square calibration for small and moderately large sample sizes. The new methods are also as easy to use as the chi-square calibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号