首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 501 毫秒
1.
We regard the simple linear calibration problem where only the response y of the regression line y = β0 + β1 t is observed with errors. The experimental conditions t are observed without error. For the errors of the observations y we assume that there may be some gross errors providing outlying observations. This situation can be modeled by a conditionally contaminated regression model. In this model the classical calibration estimator based on the least squares estimator has an unbounded asymptotic bias. Therefore we introduce calibration estimators based on robust one-step-M-estimators which have a bounded asymptotic bias. For this class of estimators we discuss two problems: The optimal estimators and their corresponding optimal designs. We derive the locally optimal solutions and show that the maximin efficient designs for non-robust estimation and robust estimation coincide.  相似文献   

2.
Consider observations (representing lifelengths) taken on a random field indexed by lattice points. Estimating the distribution function F(x) = P(X i  ≤ x) is an important problem in survival analysis. We propose to estimate F(x) by kernel estimators, which take into account the smoothness of the distribution function. Under some general mixing conditions, our estimators are shown to be asymptotically unbiased and consistent. In addition, the proposed estimator is shown to be strongly consistent and sharp rates of convergence are obtained.  相似文献   

3.
4.
The problem of consistent estimation of the slope parameter in an ultrastructural model with replicated observations is considered in this article. A consistent estimator based on a weighted arithmetic mean of two inconsistent least squares estimators is proposed which is independent of any unknown quantity. The efficiency properties of this estimator are studied.  相似文献   

5.
In experimental design applications unbiased estimators si 2 of the variances σi 2 are possible. These estimators may be used in Weighted Least Squares (WLS) when estimating the parameters β. The resulting small-sample behavior is investigated in a Monte Carlo experiment. This experiment shows that an asymptotically valid covariance formula can be used if si 2 is based on, say, at least 5 observations. The WLS estimator based on estimators si 2 gives more accurate estimators of β, provided the σi 2 differ by a factor, say, 10.  相似文献   

6.
Two‐phase sampling is often used for estimating a population total or mean when the cost per unit of collecting auxiliary variables, x, is much smaller than the cost per unit of measuring a characteristic of interest, y. In the first phase, a large sample s1 is drawn according to a specific sampling design p(s1) , and auxiliary data x are observed for the units is1 . Given the first‐phase sample s1 , a second‐phase sample s2 is selected from s1 according to a specified sampling design {p(s2s1) } , and (y, x) is observed for the units is2 . In some cases, the population totals of some components of x may also be known. Two‐phase sampling is used for stratification at the second phase or both phases and for regression estimation. Horvitz–Thompson‐type variance estimators are used for variance estimation. However, the Horvitz–Thompson ( Horvitz & Thompson, J. Amer. Statist. Assoc. 1952 ) variance estimator in uni‐phase sampling is known to be highly unstable and may take negative values when the units are selected with unequal probabilities. On the other hand, the Sen–Yates–Grundy variance estimator is relatively stable and non‐negative for several unequal probability sampling designs with fixed sample sizes. In this paper, we extend the Sen–Yates–Grundy ( Sen , J. Ind. Soc. Agric. Statist. 1953; Yates & Grundy , J. Roy. Statist. Soc. Ser. B 1953) variance estimator to two‐phase sampling, assuming fixed first‐phase sample size and fixed second‐phase sample size given the first‐phase sample. We apply the new variance estimators to two‐phase sampling designs with stratification at the second phase or both phases. We also develop Sen–Yates–Grundy‐type variance estimators of the two‐phase regression estimators that make use of the first‐phase auxiliary data and known population totals of some of the auxiliary variables.  相似文献   

7.
This paper proposes a generalized least squares and a generalized method of moment estimators for dynamic panel data models with both individual-specific and time-specific effects. We also demonstrate that the common estimators ignoring the presence of time-specific effects are inconsistent when N→∞N but T is finite if the time-specific effects are indeed present. Monte Carlo studies are also conducted to investigate the finite sample properties of various estimators. It is found that the generalized least squares estimator has the smallest bias and root mean square error, and also has nominal size close to the empirical size. It is also found that even when there is no presence of time-specific effects, there is hardly any efficiency loss of the generalized least squares estimator assuming its presence compared to the generalized least squares estimator allowing only the presence of individual-specific effects.  相似文献   

8.
This paper considers the problem of combining k unbiased estimates, x i of a parameter,μ, where each estimate, x i is the average of n i + l independent normal observations with unknown mean, μ, and unknown variance, σ i 2. The behavior of several commonly used estimators of μ is studied by means of an empirical sampling study, and the empirical results of this experiment are interpreted in terms of previous theoretical results. Finally, some extrapolations are made as to how these estimators might behave under varying conditions, and some new estimators are proposed which might have higher efficiencies under certain conditions than those which are generally used.  相似文献   

9.
10.
We consider a partially linear model in which the vector of coefficients β in the linear part can be partitioned as ( β 1, β 2) , where β 1 is the coefficient vector for main effects (e.g. treatment effect, genetic effects) and β 2 is a vector for ‘nuisance’ effects (e.g. age, laboratory). In this situation, inference about β 1 may benefit from moving the least squares estimate for the full model in the direction of the least squares estimate without the nuisance variables (Steinian shrinkage), or from dropping the nuisance variables if there is evidence that they do not provide useful information (pretesting). We investigate the asymptotic properties of Stein‐type and pretest semiparametric estimators under quadratic loss and show that, under general conditions, a Stein‐type semiparametric estimator improves on the full model conventional semiparametric least squares estimator. The relative performance of the estimators is examined using asymptotic analysis of quadratic risk functions and it is found that the Stein‐type estimator outperforms the full model estimator uniformly. By contrast, the pretest estimator dominates the least squares estimator only in a small part of the parameter space, which is consistent with the theory. We also consider an absolute penalty‐type estimator for partially linear models and give a Monte Carlo simulation comparison of shrinkage, pretest and the absolute penalty‐type estimators. The comparison shows that the shrinkage method performs better than the absolute penalty‐type estimation method when the dimension of the β 2 parameter space is large.  相似文献   

11.
In regression analysis, to overcome the problem of multicollinearity, the r ? k class estimator is proposed as an alternative to the ordinary least squares estimator which is a general estimator including the ordinary ridge regression estimator, the principal components regression estimator and the ordinary least squares estimator. In this article, we derive the necessary and sufficient conditions for the superiority of the r ? k class estimator over each of these estimators under the Mahalanobis loss function by the average loss criterion. Then, we compare these estimators with each other using the same criterion. Also, we suggest to test to verify if these conditions are indeed satisfied. Finally, a numerical example and a Monte Carlo simulation are done to illustrate the theoretical results.  相似文献   

12.
In this paper, a new estimator combined estimator (CE) is proposed for estimating the finite population mean ¯ Y N in simple random sampling assuming a long-tailed symmetric super-population model. The efficiency and robustness properties of the CE is compared with the widely used and well-known estimators of the finite population mean ¯ Y N by Monte Carlo simulation. The parameter estimators considered in this study are the classical least squares estimator, trimmed mean, winsorized mean, trimmed L-mean, modified maximum-likelihood estimator, Huber estimator (W24) and the non-parametric Hodges–Lehmann estimator. The mean square error criteria are used to compare the performance of the estimators. We show that the CE is overall more efficient than the other estimators. The CE is also shown to be more robust for estimating the finite population mean ¯ Y N , since it is insensitive to outliers and to misspecification of the distribution. We give a real life example.  相似文献   

13.
It is well known that the ordinary least squares estimator of in the general linear model E y = , cov y = σ2 V, can be the best linear unbiased estimator even if V is not a multiple of the identity matrix. This article presents, in a historical perspective, the development of the several conditions for the ordinary least squares estimator to be best linear unbiased. Various characterizations of these conditions, using generalized inverses and orthogonal projectors, along with several examples, are also given. In addition, a complete set of references is provided.  相似文献   

14.
Jump-detection and curve estimation methods for the discontinuous regression function are proposed in this article. First, two estimators of the regression function based on B-splines are considered. The first estimator is obtained when the knot sequence is quasi-uniform; by adding a knot with multiplicity p + 1 at a fixed point x0 on support [a, b], we can obtain the second estimator. Then, the jump locations are detected by the performance of the difference of the residual sum of squares DRSS(x0) (x0 ∈ (a, b)); subsequently the regression function with jumps can be fitted based on piecewise B-spline function. Asymptotic properties are established under some mild conditions. Several numerical examples using both simulated and real data are presented to evaluate the performance of the proposed method.  相似文献   

15.
Consider the linear regression model y =β01 ++ in the usual notation. It is argued that the class of ordinary ridge estimators obtained by shrinking the least squares estimator by the matrix (X1X + kI)-1X'X is sensitive to outliers in the ^variable. To overcome this problem, we propose a new class of ridge-type M-estimators, obtained by shrinking an M-estimator (instead of the least squares estimator) by the same matrix. Since the optimal value of the ridge parameter k is unknown, we suggest a procedure for choosing it adaptively. In a reasonably large scale simulation study with a particular M-estimator, we found that if the conditions are such that the M-estimator is more efficient than the least squares estimator then the corresponding ridge-type M-estimator proposed here is better, in terms of a Mean Squared Error criteria, than the ordinary ridge estimator with k chosen suitably. An example illustrates that the estimators proposed here are less sensitive to outliers in the y-variable than ordinary ridge estimators.  相似文献   

16.
Kurt Hoffmann 《Statistics》2013,47(3):302-311
The purpose of this paper consists in deriving estimators which are less sensitive than the least squares estimator, when the assumption that the expectation vector lies in a certain linear subspace is violated. The obtained robust estimators are convex combinations of the least squares estimator and of the random vector Y.  相似文献   

17.
Abstract

For an orthogonally blocked experiment, Khuri [Khuri, A. I. (1992). Response surface models with random block effects. Technometrics 34:26–37] has shown that the ordinary least squares estimator, the generalized least squares estimator and the intra-block estimator of the factor effects in a response surface model with random block effects coincide. The ordinary least squares estimator ignores the blocks, whereas the generalized least squares and the intra-block estimators treat the block effects as random and fixed, respectively. As shown in this paper, the equivalence does not hold for the estimation of the intercept when the block sizes are heterogeneous. Practical examples are given to illustrate the theoretical results.  相似文献   

18.
Suppose that a finite population consists of N distinct units. Associated with the ith unit is a polychotomous response vector, d i , and a vector of auxiliary variable x i . The values x i ’s are known for the entire population but d i ’s are known only for the units selected in the sample. The problem is to estimate the finite population proportion vector P. One of the fundamental questions in finite population sampling is how to make use of the complete auxiliary information effectively at the estimation stage. In this article a predictive estimator is proposed which incorporates the auxiliary information at the estimation stage by invoking a superpopulation model. However, the use of such estimators is often criticized since the working superpopulation model may not be correct. To protect the predictive estimator from the possible model failure, a nonparametric regression model is considered in the superpopulation. The asymptotic properties of the proposed estimator are derived and also a bootstrap-based hybrid re-sampling method for estimating the variance of the proposed estimator is developed. Results of a simulation study are reported on the performances of the predictive estimator and its re-sampling-based variance estimator from the model-based viewpoint. Finally, a data survey related to the opinions of 686 individuals on the cause of addiction is used for an empirical study to investigate the performance of the nonparametric predictive estimator from the design-based viewpoint.  相似文献   

19.
Let π1, …, πk be k (? 2) independent populations, where πi denotes the uniform distribution over the interval (0, θi) and θi > 0 (i = 1, …, k) is an unknown scale parameter. The population associated with the largest scale parameter is called the best population. For selecting the best population, We use a selection rule based on the natural estimators of θi, i = 1, …, k, for the case of unequal sample sizes. Consider the problem of estimating the scale parameter θL of the selected uniform population when sample sizes are unequal and the loss is measured by the squared log error (SLE) loss function. We derive the uniformly minimum risk unbiased (UMRU) estimator of θL under the SLE loss function and two natural estimators of θL are also studied. For k = 2, we derive a sufficient condition for inadmissibility of an estimator of θL. Using these condition, we conclude that the UMRU estimator and natural estimator are inadmissible. Finally, the risk functions of various competing estimators of θL are compared through simulation.  相似文献   

20.
Unbiased linear estimators are considered for the model
Y(xi)=θ0+∑kj=1θjxij+ψ(xi)+εi, i=1,2,…,n,
where ψ(x) is an unknown contamination. It is assumed that |ψ(x)|?φ(6x6) where φ is a convex function. Minimax analogues of Φp-optimality criteria are introduced. It is shown that, under certain (sufficient) conditions, the least squares estimators and corresponding designs are optimal in the class of all unbiased linear estimators and designs. It is also shown that, in the case when least squares estimators with symmetric design do not lead to an optimal solution, the relative efficiency of optimal least squares is not diminishing and has a uniform lower bound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号