首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Abstract

In this short note, a very simple proof of the Chebyshev's inequality for random vectors is given. This inequality provides a lower bound for the percentage of the population of an arbitrary random vector X with finite mean μ = E(X) and a positive definite covariance matrix V = Cov(X) whose Mahalanobis distance with respect to V to the mean μ is less than a fixed value. The main advantage of the proof is that it is a simple exercise for a first year probability course. An alternative proof based on principal components is also provided. This proof can be used to study the case of a singular covariance matrix V.  相似文献   

2.
3.
Wu et al. [Computational comparison for weighted moments estimators and BLUE of the scale parameter of a Pareto distribution with known shape parameter under type II multiply censored sample, Appl. Math. Comput. 181 (2006), pp. 1462–1470] proposed the weighted moments estimators (WMEs) of the scale parameter of a Pareto distribution with known shape parameter on a multiply type II-censored sample. They claimed that some WMEs are better than the best linear unbiased estimator (BLUE) based on the exact mean-squared error (MSE). In this paper, the general WME (GWME) is proposed and the computational comparison of the proposed estimator with the WMEs and BLUE is done on the basis of the exact MSE for given sample sizes and different censoring schemes. As a result, the GWME is performing better than the best estimator among 12 WMEs and BLUE for all cases. Therefore, GWME is recommended for use. At last, one example is given to demonstrate the proposed GWME.  相似文献   

4.
Probability integrals and percentage points of univariate distributions from up to eight different families, having common first four moments are compared. Among interesting observations is the remarkable consistency in the standardized upper and lower 5% points over considerable regions of the √β1, β2 plane; also the closeness of agreement between the log-normal and non-central t distributions and the Pearson Type VI and Type IV curves respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号