首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract There are given k (≥22) independent distributions with c.d.f.'s F(x;θj) indexed by a scale parameter θj, j = 1,…, k. Let θ[i] (i = 1,…, k) denote the ith smallest one of θ1,…, θk. In this paper we wish to show that, under some regularity conditions, there does not exist an exact β-level (0≤β1) confidence interval for the ith smallest scale parameter θi based on k independent samples. Since the log transformation method may not yield the desired results for the scale parameter problem, we will treat the scale parameter case directly without transformation. Application is considered for normal variances. Two conservative one-sided confidence intervals for the ith smallest normal variance and the percentage points needed to actually apply the intervals are provided.  相似文献   

2.
Suppose we have k random samples each of size n from a two parameter exponential distribution with location parameters μ i i=1,…,k, and where each item has the same, unknown scale parameter. A multistage procedure is developed to determine tk groups such that in any one group the distributions have μi's that are not appreciably different. The method yields a unique grouping and extends the approach of the Kumar and Pate1 test.The emphasis is on the development of a procedure based on the null sampling distribution of the maximum gap of the ordered first order statistics from exponential distributions. The procedure is based on complete ordered samples or censored (of any or of all) samples.  相似文献   

3.
Abstract

Let the data from the ith treatment/population follow a distribution with cumulative distribution function (cdf) F i (x) = F[(x ? μ i )/θ i ], i = 1,…, k (k ≥ 2). Here μ i (?∞ < μ i  < ∞) is the location parameter, θ i i  > 0) is the scale parameter and F(?) is any absolutely continuous cdf, i.e., F i (?) is a member of location-scale family, i = 1,…, k. In this paper, we propose a class of tests to test the null hypothesis H 0 ? θ1 = · = θ k against the simple ordered alternative H A  ? θ1 ≤ · ≤ θ k with at least one strict inequality. In literature, use of sample quasi range as a measure of dispersion has been advocated for small sample size or sample contaminated by outliers [see David, H. A. (1981). Order Statistics. 2nd ed. New York: John Wiley, Sec. 7.4]. Let X i1,…, X in be a random sample of size n from the population π i and R ir  = X i:n?r  ? X i:r+1, r = 0, 1,…, [n/2] ? 1 be the sample quasi range corresponding to this random sample, where X i:j represents the jth order statistic in the ith sample, j = 1,…, n; i = 1,…, k and [x] is the greatest integer less than or equal to x. The proposed class of tests, for the general location scale setup, is based on the statistic W r  = max1≤i<jk (R jr /R ir ). The test is reject H 0 for large values of W r . The construction of a three-decision procedure and simultaneous one-sided lower confidence bounds for the ratios, θ j i , 1 ≤ i < j ≤ k, have also been discussed with the help of the critical constants of the test statistic W r . Applications of the proposed class of tests to two parameter exponential and uniform probability models have been discussed separately with necessary tables. Comparisons of some members of our class with the tests of Gill and Dhawan [Gill A. N., Dhawan A. K. (1999). A One-sided test for testing homogeneity of scale parameters against ordered alternative. Commun. Stat. – Theory and Methods 28(10):2417–2439] and Kochar and Gupta [Kochar, S. C., Gupta, R. P. (1985). A class of distribution-free tests for testing homogeneity of variances against ordered alternatives. In: Dykstra, R. et al., ed. Proceedings of the Conference on Advances in Order Restricted Statistical Inference at Iowa city. Springer Verlag, pp. 169–183], in terms of simulated power, are also presented.  相似文献   

4.
Let πi (i=1,2,…, k) be charceterized by the uniform distribution on (ai;bi), where exactly one of ai and bi is unknown. With unequal sample sizes, suppose that from the k (>=2) given populations, we wish to select a random-size subset containing the one with the smllest value of θi= bi - ai. RuleRi selects π if a likelihood-based k-dimensional confidence region for the unknown (θ1,… θk) contains at least one point having θi as its smallest component. A second rule, R , is derived through a likelihood ratio and turns out to be that of Barr and prabhu whenthe sample sizes are equal. Numerical comparisons are made. The results apply to the larger class of densities g ( z ; θi) =M(z)Q(θi) if a(θi) < z <b(θi). Extensions to the cases when both ai and bi are unknown and when θj isof interest are indicated. 1<=j<=k  相似文献   

5.
Consider that we have a collection of k populations π1, π2…,πk. The quality of the ith population is characterized by a real parameter θi and the population is to be designated as superior or inferior depending on how much the θi differs from θmax = max{θ1, θ2,…,θk}. From the set {π1, π2,…,πk}, we wish to select the subset of superior populations. In this paper we devise rules of selection which have the property that their selected set excludes all the inferior populations with probability at least 1?α, where a is a specified number.  相似文献   

6.
The problem of simultaneously selecting two non-empty subsets, SLand SU, of k populations which contain the lower extreme population (LEP) and the upper extreme population (UEP), respectively, is considered. Unknown parameters θ1,…,θkcharacterize the populations π1,…,πkand the populations associated with θ[1]=min θi. and θ[k]= max θi. are called the LEP and the UEP, respectively. It is assumed that the underlying distributions possess the monotone likelihood ratio property and that the prior distribution of θ= (θ1,…,θk) is exchangeable. The Bayes rule with respect to a general loss function is obtained. Bayes rule with respect to a semi-additive and non-negative loss function is also determined and it is shown that it is minimax and admissible. When the selected subsets are required to be disjoint, it shown that the Bayes rule with respect to a specific loss function can be obtained by comparing certain computable integrals, Application to normal distributions with unknown means θ1,…,θkand a common known variance is also considered.  相似文献   

7.
Let X= (X1,…, Xk)’ be a k-variate (k ≥ 2) normal random vector with unknown population mean vector μ = (μ1 ,…, μk)’ and covariance matrix Σ of order k and let μ[1] ≤ … ≤ μ[k] be the ordered values of the μ ’ s. No prior knowledge of the pairing of the μ[i] with the Xj. (or μ[i] with the σj 2) is assumed for any i and j (1 ≤ i, j ≤ k). Based on a random sample of N independent vector observations on X, this paper considers both upper and lower (one-sided) and two-sided 100γ% (0 < γ < 1) confidence intervals for μ[k] and μ[1], the largest and the smallest mean, respectively, when Σ is known and when Σ is equal to σ2R with common unknown variance σ2 > 0 and correlation matrix R known, respectively. An optimum two-sided confidence interval via finding the shortest length from this class is also considered. Necessary tables and computer program to actually apply these procedures are provided.  相似文献   

8.
This paper develops a new test statistic for testing hypotheses of the form HO M0=M1=…=Mk versus Ha: M0≦M1,M2,…,Mk] where at least one inequality is strict. M0 is the median of the control population and M1 is the median of the population receiving trearment i, i=1,2,…,k. The population distributions are assumed to be unknown but to differ only in their location parameters if at all. A simulation study is done comparing the new test statistic with the Chacko and the Kruskal-Wallis when the underlying population distributions are either normal, uniform, exponential, or Cauchy. Sample sizes of five, eight, ten, and twenty were considered. The new test statistic did better than the Chacko and the Kruskal-Wallis when the medians of the populations receiving the treatments were approximately the same  相似文献   

9.
Suppose that we are given k(≥ 2) independent and normally distributed populations π1, …, πk where πi has unknown mean μi and unknown variance σ2 i (i = 1, …, k). Let μ[i] (i = 1, …, k) denote the ith smallest one of μ1, …, μk. A two-stage procedure is used to construct lower and upper confidence intervals for μ[i] and then use these to obtain a class of two-sided confidence intervals on μ[i] with fixed width. For i = k, the interval given by Chen and Dudewicz (1976) is a special case. Comparison is made between the class of two-sided intervals and a symmetric interval proposed by Chen and Dudewicz (1976) for the largest mean, and it is found that for large values of k at least one of the former intervals requires a smaller total sample size. The tables needed to actually apply the procedure are provided.  相似文献   

10.
Let π01,…,πk be k+1 independent populations. For i=0,1,…,ki has the densit f(xi), where the (unknown) parameter θi belongs to an interval of the real line. Our goal is to select from π1,… πk (experimental treatments) those populations, if any, that are better (suitably defined) than π0 which is the control population. A locally optimal rule is derived in the class of rules for which Pr(πi is selected)γi, i=1,…,k, when θ01=?=θk. The criterion used for local optimality amounts to maximizing the efficiency in a certain sense of the rule in picking out the superior populations for specific configurations of θ=(θ0,…,θk) in a neighborhood of an equiparameter configuration. The general result is then applied to the following special cases: (a) normal means comparison — common known variance, (b) normal means comparison — common unknown variance, (c) gamma scale parameters comparison — known (unequal) shape parameters, and (d) comparison of regression slopes. In all these cases, the rule is obtained based on samples of unequal sizes.  相似文献   

11.
Consider a sequence x ≡ (x1,…, xn) of n independent observations, in which each observation xi is known to be a realization from either one of ki given populations, chosen among k (≥ ki) populations π1, …, πk Our main objective is to study the problem of the selection of the most reliable population πj at a fixed time ξ, when no assumptions about the k populations are made. Some numerical examples are presented.  相似文献   

12.
A method of calculating simultaneous one-sided confidence intervals for all ordered pairwise differences of the treatment effectsji, 1 i < j k, in a one-way model without any distributional assumptions is discussed. When it is known a priori that the treatment effects satisfy the simple ordering1k, these simultaneous confidence intervals offer the experimenter a simple way of determining which treatment effects may be declared to be unequal, and is more powerful than the usual two-sided Steel-Dwass procedure. Some exact critical points required by the confidence intervals are presented for k= 3 and small sample sizes, and other methods of critical point determination such as asymptotic approximation and simulation are discussed.  相似文献   

13.
Consider K(>2) independent populations π1,..,π k such that observations obtained from π k are independent and normally distributed with unknown mean µ i and unknown variance θ i i = 1,…,k. In this paper, we provide lower percentage points of Hartley's extremal quotient statistic for testing an interval hypothesisH 0 θ [k] θ [k] > δ vs. H a : θ [k] θ [1] ≤ δ , where δ ≥ 1 is a predetermined constant and θ [k](θ [1]) is the max (min) of the θi,…,θ k . The least favorable configuration (LFC) for the test under H 0 is determined in order to obtain the lower percentage points. These percentage points can also be used to construct an upper confidence bound for θ[k][1].  相似文献   

14.
Let T2 i=z′iS?1zi, i==,…k be correlated Hotelling's T2 statistics under normality. where z=(z′i,…,z′k)′ and nS are independently distributed as Nkp((O,ρ?∑) and Wishart distribution Wp(∑, n), respectively. The purpose of this paper is to study the distribution function F(x1,…,xk) of (T2 i,…,T2 k) when n is large. First we derive an asymptotic expansion of the characteristic function of (T2 i,…,T2 k) up to the order n?2. Next we give asymptotic expansions for (T2 i,…,T2 k) in two cases (i)ρ=Ik and (ii) k=2 by inverting the expanded characteristic function up to the orders n?2 and n?1, respectively. Our results can be applied to the distribution function of max (T2 i,…,T2 k) as a special case.  相似文献   

15.
Consider n independent random variables Zi,…, Zn on R with common distribution function F, whose upper tail belongs to a parametric family F(t) = Fθ(t),t ≥ x0, where θ ∈ ? ? R d. A necessary and sufficient condition for the family Fθ, θ ∈ ?, is established such that the k-th largest order statistic Zn?k+1:n alone constitutes the central sequence yielding local asymptotic normality ( LAN ) of the loglikelihood ratio of the vector (Zn?i+1:n)1 i=kof the k largest order statistics. This is achieved for k = k(n)→n→∞∞ with k/n→n→∞ 0.

In the case of vectors of central order statistics ( Zr:n, Zr+1:n,…, Zs:n ), with r/n and s/n both converging to q ∈ ( 0,1 ), it turns out that under fairly general conditions any order statistic Zm:n with r ≤ m ≤s builds the central sequence in a pertaining LAN expansion.These results lead to asymptotically optimal tests and estimators of the underlying parameter, which depend on single order statistics only  相似文献   

16.
17.
Let X = (Xj : j = 1,…, n) be n row vectors of dimension p independently and identically distributed multinomial. For each j, Xj is partitioned as Xj = (Xj1, Xj2, Xj3), where pi is the dimension of Xji with p1 = 1,p1+p2+p3 = p. In addition, consider vectors Yji, i = 1,2j = 1,…,ni that are independent and distributed as X1i. We treat here the problem of testing independence between X11 and X13 knowing that X11 and X12 are uncorrected. A locally best invariant test is proposed for this problem.  相似文献   

18.
The authors derive the null and non-null distributions of the test statistic v=ymin/ymax (where ymin= min xij, ymax= max xij, J=1,2, …, k) connected with testing the equality of scale parameters θ1, θ2, …θk in certain, class of density functions given by   相似文献   

19.
Suppose there are k 1 (k 1 ≥ 1) test treatments that we wish to compare with k 2 (k 2 ≥ 1) control treatments. Assume that the observations from the ith test treatment and the jth control treatment follow a two-parameter exponential distribution and , where θ is a common scale parameter and and are the location parameters of the ith test and the jth control treatment, respectively, i = 1, . . . ,k 1; j = 1, . . . ,k 2. In this paper, simultaneous one-sided and two-sided confidence intervals are proposed for all k 1 k 2 differences between the test treatment location and control treatment location parameters, namely , and the required critical points are provided. Discussions of multiple comparisons of all test treatments with the best control treatment and an optimal sample size allocation are given. Finally, it is shown that the critical points obtained can be used to construct simultaneous confidence intervals for Pareto distribution location parameters.  相似文献   

20.
This paper deals with the maximum likelihood estimation of parameters when the sample (x1…xn ) may heve k spuriously generated observations from another distribution, say G≠F, where F is the distribution of the target population. If G is stochastically larger than F, then these k observations may give rise to k extreme observations or ‘outliers’. This situation is often described by a so-called ‘k-outlier model’ in which in addition to the parameters involved in F and G, the set ν={ν1,…,νk} of indices, for which xνj , j=1,…,k, come from G, is also unknow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号