首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let π01,…,πk be k+1 independent populations. For i=0,1,…,ki has the densit f(xi), where the (unknown) parameter θi belongs to an interval of the real line. Our goal is to select from π1,… πk (experimental treatments) those populations, if any, that are better (suitably defined) than π0 which is the control population. A locally optimal rule is derived in the class of rules for which Pr(πi is selected)γi, i=1,…,k, when θ01=?=θk. The criterion used for local optimality amounts to maximizing the efficiency in a certain sense of the rule in picking out the superior populations for specific configurations of θ=(θ0,…,θk) in a neighborhood of an equiparameter configuration. The general result is then applied to the following special cases: (a) normal means comparison — common known variance, (b) normal means comparison — common unknown variance, (c) gamma scale parameters comparison — known (unequal) shape parameters, and (d) comparison of regression slopes. In all these cases, the rule is obtained based on samples of unequal sizes.  相似文献   

2.
The problem of simultaneously selecting two non-empty subsets, SLand SU, of k populations which contain the lower extreme population (LEP) and the upper extreme population (UEP), respectively, is considered. Unknown parameters θ1,…,θkcharacterize the populations π1,…,πkand the populations associated with θ[1]=min θi. and θ[k]= max θi. are called the LEP and the UEP, respectively. It is assumed that the underlying distributions possess the monotone likelihood ratio property and that the prior distribution of θ= (θ1,…,θk) is exchangeable. The Bayes rule with respect to a general loss function is obtained. Bayes rule with respect to a semi-additive and non-negative loss function is also determined and it is shown that it is minimax and admissible. When the selected subsets are required to be disjoint, it shown that the Bayes rule with respect to a specific loss function can be obtained by comparing certain computable integrals, Application to normal distributions with unknown means θ1,…,θkand a common known variance is also considered.  相似文献   

3.
4.
Let π1, …, πk be k (? 2) independent populations, where πi denotes the uniform distribution over the interval (0, θi) and θi > 0 (i = 1, …, k) is an unknown scale parameter. The population associated with the largest scale parameter is called the best population. For selecting the best population, We use a selection rule based on the natural estimators of θi, i = 1, …, k, for the case of unequal sample sizes. Consider the problem of estimating the scale parameter θL of the selected uniform population when sample sizes are unequal and the loss is measured by the squared log error (SLE) loss function. We derive the uniformly minimum risk unbiased (UMRU) estimator of θL under the SLE loss function and two natural estimators of θL are also studied. For k = 2, we derive a sufficient condition for inadmissibility of an estimator of θL. Using these condition, we conclude that the UMRU estimator and natural estimator are inadmissible. Finally, the risk functions of various competing estimators of θL are compared through simulation.  相似文献   

5.
Consider K(>2) independent populations π1,..,π k such that observations obtained from π k are independent and normally distributed with unknown mean µ i and unknown variance θ i i = 1,…,k. In this paper, we provide lower percentage points of Hartley's extremal quotient statistic for testing an interval hypothesisH 0 θ [k] θ [k] > δ vs. H a : θ [k] θ [1] ≤ δ , where δ ≥ 1 is a predetermined constant and θ [k](θ [1]) is the max (min) of the θi,…,θ k . The least favorable configuration (LFC) for the test under H 0 is determined in order to obtain the lower percentage points. These percentage points can also be used to construct an upper confidence bound for θ[k][1].  相似文献   

6.
7.
Let π1,…, πk represent k(?2) independent populations. The quality of the ith population πi is characterized by a real-valued parameter θi, usually unknown. We define the best population in terms of a measure of separation between θi's. A selection of a subset containing the best population is called a correct selection (CS). We restrict attention to rules for which the size of the selected subset is controlled at a given point and the infimum of the probability of correct selection over the parameter space is maximized. The main theorem deals with construction of an essentially complete class of selection rules of the above type. Some classical subset selection rules are shown to belong to this class.  相似文献   

8.
Let πi (i=1,2,…, k) be charceterized by the uniform distribution on (ai;bi), where exactly one of ai and bi is unknown. With unequal sample sizes, suppose that from the k (>=2) given populations, we wish to select a random-size subset containing the one with the smllest value of θi= bi - ai. RuleRi selects π if a likelihood-based k-dimensional confidence region for the unknown (θ1,… θk) contains at least one point having θi as its smallest component. A second rule, R , is derived through a likelihood ratio and turns out to be that of Barr and prabhu whenthe sample sizes are equal. Numerical comparisons are made. The results apply to the larger class of densities g ( z ; θi) =M(z)Q(θi) if a(θi) < z <b(θi). Extensions to the cases when both ai and bi are unknown and when θj isof interest are indicated. 1<=j<=k  相似文献   

9.
X1, X2, …, Xk are k(k ? 2) uniform populations which each Xi follows U(0, θi). This note shows the test statistic for the null hypothesis H0: θ1 = θ2 = ??? = θk by using the order statistics.  相似文献   

10.
Suppose π1,…,πk are k normal populations with πi having unknown mean μi and unknown variance σ2. The population πi will be called δ?-optimal (or good) if μi is within a specified amountδ? of the largest mean. A two stage procedure is proposed which selects a subset of the k populations and guarantees with probability at least P? that the selected subset contains only δ?-optimal πi ’s. In addition to screening out non-good populations the rule guarantees a high proportion of sufficiently good πi’S will be selected.  相似文献   

11.
12.
Consider a sequence x ≡ (x1,…, xn) of n independent observations, in which each observation xi is known to be a realization from either one of ki given populations, chosen among k (≥ ki) populations π1, …, πk Our main objective is to study the problem of the selection of the most reliable population πj at a fixed time ξ, when no assumptions about the k populations are made. Some numerical examples are presented.  相似文献   

13.
Let π1…, πk denote k(≥ 2) populations with unknown means μ1 , …, μk and variances σ1 2 , …, σk 2 , respectively and let πo denote the control population having mean μo and variance σo 2 . It is assumed that these populations are normally distributed with correlation matrix {ρij}. The goal is to select a subset, of populations of π1 , …, πk which contains all the populations with means larger than or equal to the mean of the control one. Procedures are given for selecting such a subset so that the probability that all the populations with means larger than or equal to the mean of the control one are included in the selected subset is at least equal to a predetermined value P?(l/k < P? < 1). The goal treated here is a first step screening procedure that allows the experimenter to choose a subset and withhold judgement about which one has the largest mean. Then, if the one with the largest mean is desired it can be chosen from the selected subset on the basis of cost and other considerations. Percentage points are also included.  相似文献   

14.
ABSTRACT

Suppose independent random samples are available from k(k ≥ 2) exponential populations ∏1,…,∏ k with a common location θ and scale parameters σ1,…,σ k , respectively. Let X i and Y i denote the minimum and the mean, respectively, of the ith sample, and further let X = min{X 1,…, X k } and T i  = Y i  ? X; i = 1,…, k. For selecting a nonempty subset of {∏1,…,∏ k } containing the best population (the one associated with max{σ1,…,σ k }), we use the decision rule which selects ∏ i if T i  ≥ c max{T 1,…,T k }, i = 1,…, k. Here 0 < c ≤ 1 is chosen so that the probability of including the best population in the selected subset is at least P* (1/k ≤ P* < 1), a pre-assigned level. The problem is to estimate the average worth W of the selected subset, the arithmetic average of means of selected populations. In this article, we derive the uniformly minimum variance unbiased estimator (UMVUE) of W. The bias and risk function of the UMVUE are compared numerically with those of analogs of the best affine equivariant estimator (BAEE) and the maximum likelihood estimator (MLE).  相似文献   

15.
Let X 1, X 2,…, X k be k (≥2) independent random variables from gamma populations Π1, Π2,…, Π k with common known shape parameter α and unknown scale parameter θ i , i = 1,2,…,k, respectively. Let X (i) denotes the ith order statistics of X 1,X 2,…,X k . Suppose the population corresponding to largest X (k) (or the smallest X (1)) observation is selected. We consider the problem of estimating the scale parameter θ M (or θ J ) of the selected population under the entropy loss function. For k ≥ 2, we obtain the Unique Minimum Risk Unbiased (UMRU) estimator of θ M (and θ J ). For k = 2, we derive the class of all linear admissible estimators of the form cX (2) (and cX (1)) and show that the UMRU estimator of θ M is inadmissible. The results are extended to some subclass of exponential family.  相似文献   

16.
Let (θ1,x1),…,(θn,xn) be independent and identically distributed random vectors with E(xθ) = θ and Var(x|θ) = a + bθ + cθ2. Let ti be the linear Bayes estimator of θi and θ~i be the linear empirical Bayes estimator of θi as proposed in Robbins (1983). When Ex and Var x are unknown to the statistician. The regret of using θ~i instead of ti because of ignorance of the mean and the variance is ri = E(θi ? θi)2 ?E(tii)2. Under appropriate conditions cumulative regret Rn = r1+…rn is shown to have a finite limit even when n tends to infinity. The limit can be explicitly computed in terms of a,b,c and the first four moments of x.  相似文献   

17.
Let π1,…,πp be p independent normal populations with means μ1…, μp and variances σ21,…, σ2p respectively. Let X(ni) be a simple random sample of size ni from πi, i = 1,…,p. Given the simple random samples X(n1),…, X(np) from π1,…,πp respectively, a test has been proposed for testing the homogeneity of variances H0: σ21=…σ2p, against the restricted alternative, H1: σ21≥…≥σ2p, with at least one strict inequality. Some properties of the test are discussed and critical values are tabulated.  相似文献   

18.
Abstract There are given k (≥22) independent distributions with c.d.f.'s F(x;θj) indexed by a scale parameter θj, j = 1,…, k. Let θ[i] (i = 1,…, k) denote the ith smallest one of θ1,…, θk. In this paper we wish to show that, under some regularity conditions, there does not exist an exact β-level (0≤β1) confidence interval for the ith smallest scale parameter θi based on k independent samples. Since the log transformation method may not yield the desired results for the scale parameter problem, we will treat the scale parameter case directly without transformation. Application is considered for normal variances. Two conservative one-sided confidence intervals for the ith smallest normal variance and the percentage points needed to actually apply the intervals are provided.  相似文献   

19.
Suppose a subset of populations is selected from k exponential populations with unknown location parameters θ1, θ2, …, θk and common known scale parameter σ. We consider the estimation of the location parameter of the selected population and the average worth of the selected subset under an asymmetric LINEX loss function. We show that the natural estimator of these parameters is biased and find the uniformly minimum risk-unbiased (UMRU) estimator of these parameters. In the case of k = 2, we find the minimax estimator of the location parameter of the smallest selected population. Furthermore, we compare numerically the risk of UMRU, minimax, and the natural estimators.  相似文献   

20.
Suppose that we are given k(≥ 2) independent and normally distributed populations π1, …, πk where πi has unknown mean μi and unknown variance σ2 i (i = 1, …, k). Let μ[i] (i = 1, …, k) denote the ith smallest one of μ1, …, μk. A two-stage procedure is used to construct lower and upper confidence intervals for μ[i] and then use these to obtain a class of two-sided confidence intervals on μ[i] with fixed width. For i = k, the interval given by Chen and Dudewicz (1976) is a special case. Comparison is made between the class of two-sided intervals and a symmetric interval proposed by Chen and Dudewicz (1976) for the largest mean, and it is found that for large values of k at least one of the former intervals requires a smaller total sample size. The tables needed to actually apply the procedure are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号