首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. R. Soltani  H. Homei 《Statistics》2013,47(6):611-620
A new rich class of generalized two-sided power (TSP) distributions, where their density functions are expressed in terms of the Gauss hypergeometric functions, is introduced and studied. In this class, the symmetric distributions are supported by finite intervals and have normal shape densities. Our study on TSP distributions also leads us to a new class of discrete distributions on {0, 1, …, k}. In addition, a new numerical method for parameter estimation using moments is given.  相似文献   

2.
A new discrete distribution defined over all the positive integers and with the name of Geeta distribution is described. It is L-shaped like the logarithmic series distribution, Yule distribution and the discrete Pareto distribution but is far more versatile than them as it has two parameters. It belongs to the classes of location parameter distributions, modified power series distributions, Lagrange series distributions and exponential distributions. Its mean fi, variance a2 and two recurrence formulae for higher central moments are obtained. Convolution theorem and variations in the model with changes in the parameters have been considered. ML estimators, MVU estimators and estimators based of mean and variance and on mean and first frequency have been derived.  相似文献   

3.
A necessary and sufficient condition that a continuous, positive random variable follow a gamma distribution is given in terms of any one of its conditional finite moments and an expression involving its failure rate. The results are then used to develop a characterization for a mixture of two gamma distributions. The general results about characterization of a mixture of gamma distributions yield several special cases that have appeared separately in recent literature, including characterization of a single exponential distribution, characterization of a single gamma distribution (in terms of either first or second moments) and a sufficient condition for a mixture of two exponential distributions (in terms of first moments). The condition in this last result is shown to be necessary also. Numerous other cases are possible, using different choices for distribution parameters along with a selection of the mixing parameter, for either individual or mixtures of distributions. Various characterizations can be expressed using higher order moments, too.  相似文献   

4.
A two-parameter class of discrete distributions, Abel series distributions, generated by expanding a suitable pa,rametric function into a series of Abel polynomials is discussed. An Abel series distribution occurs in fluctuations of sample functions of stochastic processes and has applications in insurance risk, queueing, dam and storage processes. The probability generating function and the factorial moments of the Abel series distributions are obtained in closed forms. It is pointed out that the name of the generalized Poisson distribution of Consul and Jain is justified by the form of its generating function. Finally it is shown that this generalized Poisson distribution is the only member of the Abel series distributions which is closed under convolution.  相似文献   

5.
Finitization transforms a discrete distribution into a distribution with smaller support of specified size. In special cases finitization preserves moments (moments of the order n finitization coincide with those of the parent distribution). We create a moment preserving finitization method for power series distributions by introducing an alternative representation and showing how to finitize members of this new class in a manner that preserves moments of the parent distribution. We provide results on convolutions and a reproductive property for power series distributions that have been finitized in this manner, and show how these finitized distributions accelerate variate generation in simulation.  相似文献   

6.
Starting with the second Lagrange expansion, with f(z) and g(z) as two probability generating functions defined on non-negative integers, Janardan and Rao( 1983) introduced a new class of discrete distributions called the Lagrange Distributions (LD2) of the second kind. In this note, this class of LD2 distributions is widened by removing the restriction that the functions f(z) and g(z) be probability generation functions. It is also shown that the class of modified power series distributions is a subclass of LD2.  相似文献   

7.
In this article the probability generating functions of the extended Farlie–Gumbel–Morgenstern family for discrete distributions are derived. Using the probability generating function approach various properties are examined, the expressions for probabilities, moments, and the form of the conditional distributions are obtained. Bivariate version of the geometric and Poisson distributions are used as illustrative examples. Their covariance structure and estimation of parameters for a data set are briefly discussed. A new copula is also introduced.  相似文献   

8.
In this paper, we introduce a new family of discrete distributions and study its properties. It is shown that the new family is a generalization of discrete Marshall-Olkin family of distributions. In particular, we study generalized discrete Weibull distribution in detail. Discrete Marshall-Olkin Weibull distribution, exponentiated discrete Weibull distribution, discrete Weibull distribution, discrete Marshall-Olkin generalized exponential distribution, exponentiated geometric distribution, generalized discrete exponential distribution, discrete Marshall-Olkin Rayleigh distribution and exponentiated discrete Rayleigh distribution are sub-models of generalized discrete Weibull distribution. We derive some basic distributional properties such as probability generating function, moments, hazard rate and quantiles of the generalized discrete Weibull distribution. We can see that the hazard rate function can be decreasing, increasing, bathtub and upside-down bathtub shape. Estimation of the parameters are done using maximum likelihood method. A real data set is analyzed to illustrate the suitability of the proposed model.  相似文献   

9.
A new generalization of the binomial distribution is introduced that allows dependence between trials, nonconstant probabilities of success from trial to trial, and which contains the usual binomial distribution as a special case. Along with the number of trials and an initial probability of ‘success’, an additional parameter that controls the degree of correlation between trials is introduced. The resulting class of distributions includes the binomial, unirnodal distributions, and bimodal distributions. Formulas for the moments, mean, and variance of this distribution are given along with a method for fitting the distribution to sample data.  相似文献   

10.
《随机性模型》2013,29(2-3):303-326
Abstract

A number of approximate analysis techniques are based on matching moments of continuous time phase type (PH) distributions. This paper presents an explicit method to compose minimal order continuous time acyclic phase type (APH) distributions with a given first three moments. To this end we also evaluate the bounds for the first three moments of order n APH distributions (APH(n)). The investigations of these properties are based on a basic transformation, which extends the APH(n ? 1) class with an additional phase in order to describe the APH(n) class.  相似文献   

11.
This paper characterizes a class of multivariate distributions that includes the multinormal and is contained in the exponential family. The wide range of possible applications of these distributions is suggested by some of hte characteristics germane to them: First, they maximize Shannon's entropy among all distributions that have finite moments of given orders. As such, they constitute a class of distributions that includes the multinormal and some likely alternatives. Second, they can exhibit several modes, and, further-more, they do so with a relatively small number of parameters (compared to mixtures of multinormals). Third, they are the stationary distributions of certain diffusion processes. Fourth, they approximate, near the multinormal, the multivariate Pearson family. And fifth, the maximum likelihood estimators of their population moments are the sample moments. Two possible methods of estimating the distributions are studied in this paper: maximum likelihood estimation, and a fast procedure that can be used to find consistent estimators of the parameters via sample moments. A FORTTAN subroutine that implements the latter method is also provided.  相似文献   

12.
ABSTRACT

In this article, we introduce the Gompertz power series (GPS) class of distributions which is obtained by compounding Gompertz and power series distributions. This distribution contains several lifetime models such as Gompertz-geometric (GG), Gompertz-Poisson (GP), Gompertz-binomial (GB), and Gompertz-logarithmic (GL) distributions as special cases. Sub-models of the GPS distribution are studied in details. The hazard rate function of the GPS distribution can be increasing, decreasing, and bathtub-shaped. We obtain several properties of the GPS distribution such as its probability density function, and failure rate function, Shannon entropy, mean residual life function, quantiles, and moments. The maximum likelihood estimation procedure via a EM-algorithm is presented, and simulation studies are performed for evaluation of this estimation for complete data, and the MLE of parameters for censored data. At the end, a real example is given.  相似文献   

13.
In this article, we study some results related to a specific class of distributions, called skew-curved-symmetric family of distributions that depends on a parameter controlling the skewness and kurtosis at the same time. Special elements of this family which are studied include symmetric and well-known asymmetric distributions. General results are given for the score function and the observed information matrix. It is shown that the observed information matrix is always singular for some special cases. We illustrate the flexibility of this class of distributions with an application to a real dataset on characteristics of Australian athletes.  相似文献   

14.
Abstract

We introduce a new family of distributions using truncated discrete Linnik distribution. This family is a rich family of distributions which includes many important families of distributions such as Marshall–Olkin family of distributions, family of distributions generated through truncated negative binomial distribution, family of distributions generated through truncated discrete Mittag–Leffler distribution etc. Some properties of the new family of distributions are derived. A particular case of the family, a five parameter generalization of Weibull distribution, namely discrete Linnik Weibull distribution is given special attention. This distribution is a generalization of many distributions, such as extended exponentiated Weibull, exponentiated Weibull, Weibull truncated negative binomial, generalized exponential truncated negative binomial, Marshall-Olkin extended Weibull, Marshall–Olkin generalized exponential, exponential truncated negative binomial, Marshall–Olkin exponential and generalized exponential. The shape properties, moments, median, distribution of order statistics, stochastic ordering and stress–strength properties of the new generalized Weibull distribution are derived. The unknown parameters of the distribution are estimated using maximum likelihood method. The discrete Linnik Weibull distribution is fitted to a survival time data set and it is shown that the distribution is more appropriate than other competitive models.  相似文献   

15.
In this article, we study a new class of non negative distributions generated by the symmetric distributions around zero. For the special case of the distribution generated using the normal distribution, properties like moments generating function, stochastic representation, reliability connections, and inference aspects using methods of moments and maximum likelihood are studied. Moreover, a real data set is analyzed, illustrating the fact that good fits can result.  相似文献   

16.
Formulas for the moments of the better known probability distribution functions are available in the literature on the subject. Persons wishing to derive these formulas, however, may find standard methods to be quite laborious. For discrete probability functions, surprisingly compact and elegant derivations may be obtained by using finite difference operators. Examples of this approach are presented.  相似文献   

17.
We introduce a new family of distributions by adding a parameter to the Marshall–Olkin family of distributions. Some properties of the new family of distributions are derived. A particular case of the family, a three-parameter generalization of the exponential distribution, is given special attention. The shape properties, moments, distributions of the order statistics, entropies and estimation procedures are derived. An application to a real data set is discussed.  相似文献   

18.
The paper generalizes the univariate discrete exponential family of distributions to the multivariate situation, and this generalization includes the multivariate power series distributions, the multivariate Lagrangian distributions, and the modified multivariate power-series distributions. This provides a unified approach for the study of these three classes of distributions. We obtain recurrence relations for moments and cumulants, and the maximum likelihood estimation for the discrete exponential family. These results are applied to some multivariate discrete distributions like the Lagrangian Poisson, Lagrangian (negative) multinomial, logarithmic series distributions and multivariate Lagrangian negative binomial distribution.  相似文献   

19.
20.
The paper deals with the problem of using contours as the basis for defining probability distributions. First, the most general probability densities with given contours are obtained and the particular cases of circular and elliptical contours are dealt with. It is shown that the so-called elliptically contoured distributions do not include all possible cases. Next, the case of contours defined by polar coordinates is analyzed including its simulation and parameter estimation. Finally, the case of cumulative distribution functions with given contours is discussed. Several examples are used for illustrative purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号