首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the problem of estimating unknown parameters, reliability function and hazard function of a two parameter bathtub-shaped distribution on the basis of progressive type-II censored sample. The maximum likelihood estimators and Bayes estimators are derived for two unknown parameters, reliability function and hazard function. The Bayes estimators are obtained against squared error, LINEX and entropy loss functions. Also, using the Lindley approximation method we have obtained approximate Bayes estimators against these loss functions. Some numerical comparisons are made among various proposed estimators in terms of their mean square error values and some specific recommendations are given. Finally, two data sets are analyzed to illustrate the proposed methods.  相似文献   

2.
Bayes and classical estimators have been obtained for a two-parameter exponentiated Pareto distribution for when samples are available from complete, type I and type II censoring schemes. Bayes estimators have been developed under a squared error loss function as well as under a LINEX loss function using priors of non-informative type for the parameters. It has been seen that the estimators obtained are not available in nice closed forms, although they can be easily evaluated for a given sample by using suitable numerical methods. The performances of the proposed estimators have been compared on the basis of their simulated risks obtained under squared error as well as under LINEX loss functions.  相似文献   

3.
ABSTRACT

The paper deals with Bayes estimation of the exponentiated Weibull shape parameters under linex loss function when independent non-informative type of priors are available for the parameters. Generalized maximum likelihood estimators have also been obtained. Performances of the proposed Bayes estimator, generalized maximum likelihood estimators, posterior mean (i.e., Bayes estimator under squared error loss function) and maximum likelihood estimators have been studied on the basis of their risks under linex loss function. The comparison is based on a simulation study because the expressions for risk functions of these estimators cannot be obtained in nice closed forms.  相似文献   

4.
In this paper, we consider paired survival data, in which pair members are subject to the same right censoring time, but they are dependent on each other. Assuming the Marshall–Olkin Multivariate Weibull distribution for the joint distribution of the lifetimes (X1, X2) and the censoring time X3, we derive the joint density of the actual observed data and obtain maximum likelihood estimators, Bayes estimators and posterior regret Gamma minimax estimators of the unknown parameters under squared error loss and weighted squared error loss functions. We compare the performances of the maximum likelihood estimators and Bayes estimators numerically in terms of biases and estimated Mean Squared Error Loss.  相似文献   

5.
Minimax squared error risk estimators of the mean of a multivariate normal distribution are characterized which have smallest Bayes risk with respect to a spherically symmetric prior distribution for (i) squared error loss, and (ii) zero-one loss depending on whether or not estimates are consistent with the hypothesis that the mean is null. In (i), the optimal estimators are the usual Bayes estimators for prior distributions with special structure. In (ii), preliminary test estimators are optimal. The results are obtained by applying the theory of minimax-Bayes-compromise decision problems.  相似文献   

6.
In this article, we consider the Bayes and empirical Bayes problem of the current population mean of a finite population when the sample data is available from other similar (m-1) finite populations. We investigate a general class of linear estimators and obtain the optimal linear Bayes estimator of the finite population mean under a squared error loss function that considered the cost of sampling. The optimal linear Bayes estimator and the sample size are obtained as a function of the parameters of the prior distribution. The corresponding empirical Bayes estimates are obtained by replacing the unknown hyperparameters with their respective consistent estimates. A Monte Carlo study is conducted to evaluate the performance of the proposed empirical Bayes procedure.  相似文献   

7.
Adaptive design is widely used in clinical trials. In this paper, we consider the problem of estimating the mean of the selected normal population in two-stage adaptive designs. Under the LINEX and L2 loss functions, admissibility and minimax results are derived for some location invariant estimators of the selected normal mean. The naive sample mean estimator is shown to be inadmissible under the LINEX loss function and to be not minimax under both loss functions.  相似文献   

8.
In this article, based on progressively Type-II censored samples from a heterogeneous population that can be represented by a finite mixture of two-component Rayleigh lifetime model, the problem of estimating the parameters and some lifetime parameters (reliability and hazard functions) are considered. Both Bayesian and maximum likelihood estimators are of interest. A class of natural conjugate prior densities is considered in the Bayesian setting. The Bayes estimators are obtained using both the symmetric (squared error) loss function, and the asymmetric (LINEX and General Entropy) loss functions. It has been seen that the estimators obtained can be easily evaluated for this type of censoring by using suitable numerical methods. Finally, the performance of the estimates have been compared on the basis of their simulated maximum square error via a Monte Carlo simulation study.  相似文献   

9.
In this paper, the Bayes estimators for the parameter, the reliability function, and failure rate function of the Rayleigh distribution are obtained when based on complete or type II censored samples. Some types of the linex loss function are used. Comparieons in terms of risks of those under linex loss and squared error loss function with Bayes estimators relative to squared error loss function are made, Numerical example and simulation example are included.  相似文献   

10.
The four-parameter Exponentiated Modified Weibull (EMW) is considered as an important lifetime distribution. Based on progressive Type-II censored sample, maximum likelihood and Bayesian estimators of the parameters, reliability function, and hazard rate function are derived. Two cases are considered: first, the case of one unknown exponent parameter of EMW and second, the case when two parameters of the EMW are both unknown. The Bayes estimators are studied under squared error and LINEX loss functions. The standard Bayes and importance sampling are considered for the estimation. Monte Carlo simulations are performed under different samples sizes and different censoring schemes for investigating and comparing the methods of estimation.  相似文献   

11.
In this paper, the problem of estimating unknown parameters of a two-parameter Kumaraswamy-Exponential (Kw-E) distribution is considered based on progressively type-II censored sample. The maximum likelihood (ML) estimators of the parameters are obtained. Bayes estimates are also obtained using different loss functions such as squared error, LINEX and general entropy. Lindley's approximation method is used to evaluate these Bayes estimates. Monte Carlo simulation is used for numerical comparison between various estimates developed in this paper.  相似文献   

12.
The present article obtains the point estimators of the exponentiated-Weibull parameters when all the three parameters of the distribution are unknown. Maximum likelihood estimator generalized maximum likelihood estimator and Bayes estimators are proposed for three-parameter exponentiated-Weibull distribution when available sample is type-II censored. Independent non-informative types of priors are considered for the unknown parameters to develop generalized maximum likelihood estimator and Bayes estimators. Although the proposed estimators cannot be expressed in nice closed forms, these can be easily obtained through the use of appropriate numerical techniques. The performances of these estimators are studied on the basis of their risks, computed separately under LINEX loss and squared error loss functions through Monte-Carlo simulation technique. An example is also considered to illustrate the estimators.  相似文献   

13.
ABSTRACT

Squared error loss remains the most commonly used loss function for constructing a Bayes estimator of the parameter of interest. However, it can lead to suboptimal solutions when a parameter is defined on a restricted space. It can also be an inappropriate choice in the context when an extreme overestimation and/or underestimation results in severe consequences and a more conservative estimator is preferred. We advocate a class of loss functions for parameters defined on restricted spaces which infinitely penalize boundary decisions like the squared error loss does on the real line. We also recall several properties of loss functions such as symmetry, convexity and invariance. We propose generalizations of the squared error loss function for parameters defined on the positive real line and on an interval. We provide explicit solutions for corresponding Bayes estimators and discuss multivariate extensions. Four well-known Bayesian estimation problems are used to demonstrate inferential benefits the novel Bayes estimators can provide in the context of restricted estimation.  相似文献   

14.
This article develops constrained Bayes and empirical Bayes estimators under balanced loss functions. In the normal-normal example, estimators of the mean squared errors of the EB and constrained EB estimators are provided which are correct asymptotically up to O(m ?1), m denoting the number of strata.  相似文献   

15.
ABSTRACT

In this paper, we derive the Bayes estimators of functions of parameters of the size-biased generalized power series distribution under squared error loss function and weighted square error loss function. The results of size-biased GPSD are then used to obtain particular cases of the size-biased negative binomial, size-biased logarithmic series, and size-biased Poisson distributions. These estimators are better than the classical minimum variance unbiased estimators in the sense that they increase the range of the estimation. Finally, an example is provided to illustrate the results and a goodness of fit test is done using the maximum likelihood and Bayes estimators.  相似文献   

16.
We derive analytic expressions for the biases, to O(n? 1), of the maximum likelihood estimators of the parameters of the generalized Rayleigh distribution family. Using these expressions to bias-correct the estimators is found to be extremely effective in terms of bias reduction, and generally results in a small reduction in relative mean squared error. In general, the analytic bias-corrected estimators are also found to be superior to the alternative of bias-correction via the bootstrap.  相似文献   

17.

In this paper, we discuss an estimation problem of the mean in the inverse Gaussian distribution with a known coefficient of variation. Two types of linear estimators for the mean, the linear minimum variance unbiased estimator and the linear minimum mean squared error estimator, are constructed by using the squared error loss function and their properties are examined. It is observed that, for small samples the performance of the proposed estimators is better than that of the maximum likelihood estimator, when the coefficient of variation is large.  相似文献   

18.
Equivariant point estimators of one component of a bivariate normal mean vector are considered when the second component is known. Equivariant point estimators are characterized and compared in terms of their risk functions with respect to a normalized squared-error loss function. Specific point estimators that dominate the usual estimator when the squared correlation coefficient is sufficiently large are provided.  相似文献   

19.
For a class of discrete distributions, including Poisson(θ), Generalized Poisson(θ), Borel(m, θ), etc., we consider minimax estimation of the parameter θ under the assumption it lies in a bounded interval of the form [0, m] and a LINEX loss function. Explicit conditions for the minimax estimator to be Bayes with respect to a boundary supported prior are given. Also for Bernoulli(θ)-distribution, which is not in the mentioned class of discrete distributions, we give conditions for which the Bayes estimator of θ ∈ [0, m], m < 1 with respect to a boundary supported prior is minimax under LINEX loss function. Numerical values are given for the largest values of m for which the corresponding Bayes estimators of θ are minimax.  相似文献   

20.
Abstract

The shape parameter of Topp–Leone distribution is estimated in this article from the Bayesian viewpoint under the assumption of known scale parameter. Bayes and empirical Bayes estimates of the unknown parameter are proposed under non informative and suitable conjugate priors. These estimates are derived under the assumption of squared and linear-exponential error loss functions. The risk functions of the proposed estimates are derived in analytical forms. It is shown that the proposed estimates are minimax and admissible. The consistency of the proposed estimates under the squared error loss function is also proved. Numerical examples are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号