首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The asymptotic distribution of estimators generated by the methods of moments and maximum likelihood are considered. Simple formulae are provided which enable comparisons of asymptotic relative efficiency to be effected.  相似文献   

2.
Lognormal distribution is one of the popular distributions used for modelling positively skewed data, especially those encountered in economic and financial data. In this paper, we propose an efficient method for the estimation of parameters and quantiles of the three-parameter lognormal distribution, which avoids the problem of unbounded likelihood, by using statistics that are invariant to unknown location. Through a Monte Carlo simulation study, we then show that the proposed method performs well compared to other prominent methods in terms of both bias and mean-squared error. Finally, we present two illustrative examples.  相似文献   

3.
This article is concerned with modifications of both maximum likelihood and moment estimators for parameters of the three-parameter Wei bull distribution. Modifications presented here are basically the same as those previously proposed by the authors (1980, 1981, 1982) in connection with the lognormal and the gamma distributions. Computer programs were prepared for the practical application of these estimators and an illustrative example is included. Results of a simulation study provide insight into the sampling behavior of the new estimators and include comparisons with the traditional moment and maximum likelihood estimators. For some combinations of parameter values, some of the modified estimators considered here enjoy advantages over both moment and maximum likelihood estimators with respect to bias, variance, and/or ease of calculation.  相似文献   

4.
ABSTRACT

Recently it is observed that the inverse Weibull (IW) distribution can be used quite effectively to analyse lifetime data in one dimension. The main aim of this paper is to define a bivariate inverse Weibull (BIW) distribution so that the marginals have IW distributions. It is observed that the joint probability density function and the joint cumulative distribution function can be expressed in compact forms. Several properties of this distribution such as marginals, conditional distributions and product moments have been discussed. We obtained the maximum likelihood estimates for the unknown parameters of this distribution and their approximate variance– covariance matrix. We perform some simulations to see the performances of the maximum likelihood estimators. One data set has been re-analysed and it is observed that the bivariate IW distribution provides a better fit than the bivariate exponential distribution.  相似文献   

5.
The three-parameter gamma distribution is widely used as a model for distributions of life spans, reaction times, and for other types of skewed data. In this paper, we propose an efficient method of estimation for the parameters and quantiles of the three-parameter gamma distribution, which avoids the problem of unbounded likelihood, based on statistics invariant to unknown location. Through a Monte Carlo simulation study, we then show that the proposed method performs well compared to other prominent methods in terms of bias and mean squared error. Finally, we present two illustrative examples.  相似文献   

6.
In this work, we propose a consistent method of estimation for the parameters of the three-parameter lognormal distribution. We then discuss some properties of these estimators and show by means of a Monte Carlo simulation study that the proposed estimators perform better than some other prominent estimators in terms of bias and root mean squared error. Finally, we present two real-life examples to illustrate the method of estimation proposed.  相似文献   

7.
We propose a modification of the moment estimators for the two-parameter weighted Lindley distribution. The modification replaces the second sample moment (or equivalently the sample variance) by a certain sample average which is bounded on the unit interval for all values in the sample space. In this method, the estimates always exist uniquely over the entire parameter space and have consistency and asymptotic normality over the entire parameter space. The bias and mean squared error of the estimators are also examined by means of a Monte Carlo simulation study, and the empirical results show the small-sample superiority in addition to the desirable large sample properties. Monte Carlo simulation study showed that the proposed modified moment estimators have smaller biases and smaller mean-square errors than the existing moment estimators and are compared favourably with the maximum likelihood estimators in terms of bias and mean-square error. Three illustrative examples are finally presented.  相似文献   

8.
A three-parameter extension of the exponential distribution is introduced and studied in this paper. The new distribution is quite flexible and can be used effectively in modelling survival data, reliability problems, fatigue life studies and hydrological data. It can have constant, decreasing, increasing, upside-down bathtub (unimodal), bathtub-shaped and decreasing–increasing–decreasing hazard rate functions. We provide a comprehensive account of the mathematical properties of the new distribution and various structural quantities are derived. We discuss maximum likelihood estimation of the model parameters for complete sample and for censored sample. An empirical application of the new model to real data is presented for illustrative purposes. We hope that the new distribution will serve as an alternative model to other models available in the literature for modelling real data in many areas.  相似文献   

9.
In this paper we consider the Inverse Gaussian distribution whose variance is proportional to the mean. Assuming that the data are available from IGD(,μ,c,μ 2), and also from its length biased version, simulation studies are presented to compare the MVUE and MLE in terms of their variances and mean square errors from both kinds of data. Some tables and graphs are provided to analyze the comparisons. Finally, some recommendations and conclusions are given when one or both kinds of data are available.  相似文献   

10.
This paper deals with estimation of parameters and the mean life of a mixed failure time distribution that has a discrete probability mass at zero and an exponential distribution with mean O for positive values. A new sampling scheme similar to Jayade and Prasad (1990) is proposed for estimation of parameters. We derive expressions for biases and mean square errors (MSEs) of the maximum likelihood estimators (MLEs). We also obtain the uniformly minimum variance unbiased estimators (UMVUEs) of the parameters. We compare the estimator of O and mean life fj based on the proposed sampling scheme with the estimators obtained by using the sampling scheme of Jayade and Prasad (1990).  相似文献   

11.
The problem of estimation of parameters of a mixture of degenerate and exponential distributions is considered. A new sampling scheme is proposed and the exact bias and the mean square error (MSE) of the maximum likelihood estimators of the parameters is derived. Moment estimators, their approximate biases and the MSE are obtained. Asymptotic distributions of the estimators are also obtained for both the cases.  相似文献   

12.
Iterative procedures are developed for finding maximum likelihood estimates of the parameters of mixtures of two inverse Gaussian distributions. The performance of the estimates based on small samples is studied by simulation experiments. Asymptotic efficiencies relative to estimates based on completely classified samples are also evaluated. Unless the components of the populations are widely separated, the maximum likelihood estimates perform poorly.  相似文献   

13.
This paper extends the result of Padgett (1981) and gives a Bayes estimate of the reliability function of two-parameter inverse Gaussian distribution using Jeffreys' non-informative joint prior and a squared error loss fun ction . A numerical example is given. Based on a Monte Carlo simulation, Bayes estimator of reliability is compared with its maximum likelihood counterpart.  相似文献   

14.
The maximum likelihood estimators and moment estimators are derived for samples from the Gamma distribution in the presence of outliers. These estimators are compared empirically when all the three parameters are unknown and when one of the three parameters is known; their bias and mean square error (MSE) are investigated with the help of numerical technique.  相似文献   

15.
James-Stein estimators are proposed for the #-parameter of an inverse Gaussian #G# distribution. The estimators of this class have smaller expected quadratic loss than the maximum likelihood estimator usually employed when analysing real sets of data. This problem is also studied for the case of an unknown nuisance parameter. Finally, improved estimators are considered for # in the two sample problem.  相似文献   

16.
In this paper, the estimation of parameters for a three-parameter Weibull distribution based on progressively Type-II right censored sample is studied. Different estimation procedures for complete sample are generalized to the case with progressively censored data. These methods include the maximum likelihood estimators (MLEs), corrected MLEs, weighted MLEs, maximum product spacing estimators and least squares estimators. We also proposed the use of a censored estimation method with one-step bias-correction to obtain reliable initial estimates for iterative procedures. These methods are compared via a Monte Carlo simulation study in terms of their biases, root mean squared errors and their rates of obtaining reliable estimates. Recommendations are made from the simulation results and a numerical example is presented to illustrate all of the methods of inference developed here.  相似文献   

17.
We investigate a Bayesian inference in the three-parameter bathtub-shaped lifetime distribution which is obtained by adding a power parameter to the two-parameter bathtub-shaped lifetime distribution suggested by Chen (2000). The Bayes estimators under the balanced squared error loss function are derived for three parameters. Then, we have used Lindley's and Tierney–Kadane approximations (see Lindley 1980; Tierney and Kadane 1986) for computing these Bayes estimators. In particular, we propose the explicit form of Lindley's approximation for the model with three parameters. We also give applications with a simulated data set and two real data sets to show the use of discussed computing methods. Finally, concluding remarks are mentioned.  相似文献   

18.
19.
In this paper, we propose a consistent method of estimation for the parameters of the three-parameter inverse Gaussian distribution. We then discuss some properties of these estimators and show by means of a Monte Carlo simulation study that the proposed estimators perform better than some other prominent estimators in terms of bias and root mean squared error. Finally, we present two real-life examples to illustrate the method of inference developed here.  相似文献   

20.
A class of goodness-of-fit estimators is found to provide a useful alternative in certain situations to the standard maximum likelihood method which has some undesirable estimation characteristics for estimation from the three-parameter lognormal distribution. The class of goodness-of-fit tests considered include the Shapiro-Wilk and Filliben tests which reduce to a weighted linear combination of the order statistics that can be maximized in estimation problems. The weighted order statistic estimators are compared to the standard procedures in Monte Carlo simulations. Robustness of the procedures are examined and example data sets analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号