首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we discuss on how to predict a combined quadratic parametric function of the form β H β + hσ2 in a general linear model with stochastic regression coefficients denoted by y  =  X β +  e . Firstly, the quadratic predictability of β H β + hσ2 is investigated to obtain a quadratic unbiased predictor (QUP) via a general method of structuring an unbiased estimator. This QUP is also optimal in some situations and therefore we hope it will be a fine predictor. To show this idea, we apply the Lagrange multipliers method to this problem and finally reach the expected conclusion through permutation matrix techniques.  相似文献   

2.
Yo Sheena † 《Statistics》2013,47(5):371-379
We consider the estimation of Σ of the p-dimensional normal distribution Np (0, Σ) when Σ?=?θ0 Ip ?+?θ1 aa′, where a is an unknown p-dimensional normalized vector and θ0?>?0, θ1?≥?0 are also unknown. First, we derive the restricted maximum likelihood (REML) estimator. Second, we propose a new estimator, which dominates the REML estimator with respect to Stein's loss function. Finally, we carry out Monte Carlo simulation to investigate the magnitude of the new estimator's superiority.  相似文献   

3.
The general mixed linear model can be written y =  + Zu + e, where β is a vector of fixed effects, u is a vector of random effects and e is a vector of random errors. In this note, we mainly aim at investigating the general necessary and sufficient conditions under which the best linear unbiased estimator for \varvec r(\varvec l, \varvec m) = \varvec l\varvec ¢\varvec b+\varvec m\varvec ¢\varvec u{\varvec \varrho}({\varvec l}, {\varvec m}) = {\varvec l}{\varvec '}{\varvec \beta}+{\varvec m}{\varvec '}{\varvec u} is also optimal under the misspecified model. In addition, we offer approximate conclusions in some special situations including a random regression model.  相似文献   

4.
Xu-Qing Liu 《Statistics》2013,47(6):525-541
For a finite population and the resulting linear model Y=+e, the problem of the optimal invariant quadratic predictors including optimal invariant quadratic unbiased predictor and optimal invariant quadratic (potentially) biased predictor for the population quadratic quantities, f(H)=Y′HY , is of interest and has been previously considered in the literature for the case of HX=0. However, the special case does not contain all of situations at all. So, predicting f(H) in general situations may be of particular interest. In this paper, we make an effort to investigate how to offer a good predictor for f(H), not restricted yet to the mentioned case. Permutation matrix techniques play an important role in handling the process. The expected predictors are finally derived. In addition, we mention that the resulting predictors can be viewed as acceptable in all situations.  相似文献   

5.
The Delta method uses truncated Lagrange expansions of statistics to obtain approximations to their distributions. In this paper, we consider statistics Y=g(μ+X), where X is any random vector. We obtain domains 𝒟 such that, when μ∈𝒟, we may apply the distribution derived from the Delta method. Namely, we will consider an application on the normal case to illustrate our approach.  相似文献   

6.
LetX andY be two random variables with finite expectationsE X andE Y, respectively. ThenX is said to be smaller thanY in the dilation order ifE[ϕ(X-E X)]≤E[ϕ(Y-E Y)] for any convex functionϕ for which the expectations exist. In this paper we obtain a new characterization of the dilation order. This characterization enables us to give new interpretations to the dilation order, and using them we identify conditions which imply the dilation order. A sample of applications of the new characterization is given. Partially supported by MURST 40% Program on Non-Linear Systems and Applications. Partially supported by “Gruppo Nazionale per l'Analisi Funzionale e sue Applicazioni”—CNR.  相似文献   

7.
Following the paper by Genton and Loperfido [Generalized skew-elliptical distributions and their quadratic forms, Ann. Inst. Statist. Math. 57 (2005), pp. 389–401], we say that Z has a generalized skew-normal distribution, if its probability density function (p.d.f.) is given by f(z)=2φ p (z; ξ, Ω)π (z?ξ), z∈? p , where φ p (·; ξ, Ω) is the p-dimensional normal p.d.f. with location vector ξ and scale matrix Ω, ξ∈? p , Ω>0, and π is a skewing function from ? p to ?, that is 0≤π (z)≤1 and π (?z)=1?π (z), ? z∈? p . First the distribution of linear transformations of Z are studied, and some moments of Z and its quadratic forms are derived. Next we obtain the joint moment-generating functions (m.g.f.’s) of linear and quadratic forms of Z and then investigate conditions for their independence. Finally explicit forms for the above distributions, m.g.f.’s and moments are derived when π (z)=κ (αz), where α∈? p and κ is the normal, Laplace, logistic or uniform distribution function.  相似文献   

8.
ABSTRACT

In this article, we consider a (k + 1)n-dimensional elliptically contoured random vector (XT1, X2T, …, XTk, ZT)T = (X11, …, X1n, …, Xk1, …, Xkn, Z1, …, Zn)T and derive the distribution of concomitant of multivariate order statistics arising from X1, X2, …, Xk. Specially, we derive a mixture representation for concomitant of bivariate order statistics. The joint distribution of the concomitant of bivariate order statistics is also obtained. Finally, the usefulness of our result is illustrated by a real-life data.  相似文献   

9.
10.
《随机性模型》2013,29(2):157-190
In this paper, we establish an explicit form of matrix decompositions for the queue length distributions of the MAP/G/1 queues under multiple and single vacations with N-policy. We show that the vector generating function Y (z) of the queue length at an arbitrary time and X (z) at departures are decomposed into Y (z) = p idle (z Y (z) and X (z) = p idle (z X (z) where p idle (z) is the vector generating function of the queue length at an arbitrary epoch at which the server is not in service, and ζ Y (z) and ζ X (z) are unidentified matrix generating functions.  相似文献   

11.
In this article, we formulate a transfer theorem in terms of probability generating functions and discuss two approaches to limit distributions of random sums of Z +-valued random variables. We then develop Z +-valued N-ID and ?-ID laws.  相似文献   

12.
Arnold and Stahlecker (Stat Pap 44:107–115, 2003) considered the prediction of future values of the dependent variable in the linear regression model with a relative squared error and deterministic disturbances. They found an explicit form for a minimax linear affine solution d* of that problem. In the paper we generalize this result proving that the decision rule d* is also minimax when the class D{\mathcal{D}} of possible predictors of the dependent variable is unrestricted. Then we show that d* remains minimax in D{\mathcal{D}} when the disturbances are random with the mean vector zero and the known positive definite covariance matrix.  相似文献   

13.
This paper presents a methodology for model fitting and inference in the context of Bayesian models of the type f(Y | X,θ)f(X|θ)f(θ), where Y is the (set of) observed data, θ is a set of model parameters and X is an unobserved (latent) stationary stochastic process induced by the first order transition model f(X (t+1)|X (t),θ), where X (t) denotes the state of the process at time (or generation) t. The crucial feature of the above type of model is that, given θ, the transition model f(X (t+1)|X (t),θ) is known but the distribution of the stochastic process in equilibrium, that is f(X|θ), is, except in very special cases, intractable, hence unknown. A further point to note is that the data Y has been assumed to be observed when the underlying process is in equilibrium. In other words, the data is not collected dynamically over time. We refer to such specification as a latent equilibrium process (LEP) model. It is motivated by problems in population genetics (though other applications are discussed), where it is of interest to learn about parameters such as mutation and migration rates and population sizes, given a sample of allele frequencies at one or more loci. In such problems it is natural to assume that the distribution of the observed allele frequencies depends on the true (unobserved) population allele frequencies, whereas the distribution of the true allele frequencies is only indirectly specified through a transition model. As a hierarchical specification, it is natural to fit the LEP within a Bayesian framework. Fitting such models is usually done via Markov chain Monte Carlo (MCMC). However, we demonstrate that, in the case of LEP models, implementation of MCMC is far from straightforward. The main contribution of this paper is to provide a methodology to implement MCMC for LEP models. We demonstrate our approach in population genetics problems with both simulated and real data sets. The resultant model fitting is computationally intensive and thus, we also discuss parallel implementation of the procedure in special cases.  相似文献   

14.
This article considers spatial data z( s 1), z( s 2),…, z( s n ) collected at n locations, with the objective of predicting z( s 0) at another location. The usual method of analysis for this problem is kriging, but here we introduce a new signal-plus-noise model whose essential feature is the identification of hot spots. The signal decays in relation to distance from hot spots. We show that hot spots can be located with high accuracy and that the decay parameter can be estimated accurately. This new model compares well to kriging in simulations.  相似文献   

15.
ABSTRACT

In the stepwise procedure of selection of a fixed or a random explanatory variable in a mixed quantitative linear model with errors following a Gaussian stationary autocorrelated process, we have studied the efficiency of five estimators relative to Generalized Least Squares (GLS): Ordinary Least Squares (OLS), Maximum Likelihood (ML), Restricted Maximum Likelihood (REML), First Differences (FD), and First-Difference Ratios (FDR). We have also studied the validity and power of seven derived testing procedures, to assess the significance of the slope of the candidate explanatory variable x 2 to enter the model in which there is already one regressor x 1. In addition to five testing procedures of the literature, we considered the FDR t-test with n ? 3 df and the modified t-test with n? ? 3 df for partial correlations, where n? is Dutilleul's effective sample size. Efficiency, validity, and power were analyzed by Monte Carlo simulations, as functions of the nature, fixed vs. random (purely random or autocorrelated), of x 1 and x 2, the sample size and the autocorrelation of random terms in the regression model. We report extensive results for the autocorrelation structure of first-order autoregressive [AR(1)] type, and discuss results we obtained for other autocorrelation structures, such as spherical semivariogram, first-order moving average [MA(1)] and ARMA(1,1), but we could not present because of space constraints. Overall, we found that:
  1. the efficiency of slope estimators and the validity of testing procedures depend primarily on the nature of x 2, but not on that of x 1;

  2. FDR is the most inefficient slope estimator, regardless of the nature of x 1 and x 2;

  3. REML is the most efficient of the slope estimators compared relative to GLS, provided the specified autocorrelation structure is correct and the sample size is large enough to ensure the convergence of its optimization algorithm;

  4. the FDR t-test, the modified t-test and the REML t-test are the most valid of the testing procedures compared, despite the inefficiency of the FDR and OLS slope estimators for the former two;

  5. the FDR t-test, however, suffers from a lack of power that varies with the nature of x 1 and x 2; and

  6. the modified t-test for partial correlations, which does not require the specification of an autocorrelation structure, can be recommended when x 1 is fixed or random and x 2 is random, whether purely random or autocorrelated. Our results are illustrated by the environmental data that motivated our work.

  相似文献   

16.
In this paper, by considering a (3n+1) -dimensional random vector (X0, XT, YT, ZT)T having a multivariate elliptical distribution, we derive the exact joint distribution of (X0, aTX(n), bTY[n], cTZ[n])T, where a, b, c∈?n, X(n)=(X(1), …, X(n))T, X(1)<···<X(n), is the vector of order statistics arising from X, and Y[n]=(Y[1], …, Y[n])T and Z[n]=(Z[1], …, Z[n])T denote the vectors of concomitants corresponding to X(n) ((Y[r], Z[r])T, for r=1, …, n, is the vector of bivariate concomitants corresponding to X(r)). We then present an alternate approach for the derivation of the exact joint distribution of (X0, X(r), Y[r], Z[r])T, for r=1, …, n. We show that these joint distributions can be expressed as mixtures of four-variate unified skew-elliptical distributions and these mixture forms facilitate the prediction of X(r), say, based on the concomitants Y[r] and Z[r]. Finally, we illustrate the usefulness of our results by a real data.  相似文献   

17.
Every random q-vector with finite moments generates a set of orthonormal polynomials. These are generated from the basis functions xn = xn11xnqq using Gram–Schmidt orthogonalization. One can cycle through these basis functions using any number of ways. Here, we give results using minimum cycling. The polynomials look simpler when centered about the mean of X, and still simpler form when X is symmetric about zero. This leads to an extension of the multivariate Hermite polynomial for a general random vector symmetric about zero. As an example, the results are applied to the multivariate normal distribution.  相似文献   

18.
In partly linear models, the dependence of the response y on (x T, t) is modeled through the relationship y=x T β+g(t)+?, where ? is independent of (x T, t). We are interested in developing an estimation procedure that allows us to combine the flexibility of the partly linear models, studied by several authors, but including some variables that belong to a non-Euclidean space. The motivating application of this paper deals with the explanation of the atmospheric SO2 pollution incidents using these models when some of the predictive variables belong in a cylinder. In this paper, the estimators of β and g are constructed when the explanatory variables t take values on a Riemannian manifold and the asymptotic properties of the proposed estimators are obtained under suitable conditions. We illustrate the use of this estimation approach using an environmental data set and we explore the performance of the estimators through a simulation study.  相似文献   

19.
20.
We consider the specific transformation of a Wiener process {X(t), t ≥ 0} in the presence of an absorbing barrier a that results when this process is “time-locked” with respect to its first passage time T a through a criterion level a, and the evolution of X(t) is considered backwards (retrospectively) from T a . Formally, we study the random variables defined by Y(t) ≡ X(T a  ? t) and derive explicit results for their density and mean, and also for their asymptotic forms. We discuss how our results can aid interpretations of time series “response-locked” to their times of crossing a criterion level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号