首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 549 毫秒
1.
ABSTRACT

Modeling diagnostics assess models by means of a variety of criteria. Each criterion typically performs its evaluation upon a specific inferential objective. For instance, the well-known DFBETAS in linear regression models are a modeling diagnostic which is applied to discover the influential cases in fitting a model. To facilitate the evaluation of generalized linear mixed models (GLMM), we develop a diagnostic for detecting influential cases based on the information complexity (ICOMP) criteria for detecting influential cases which substantially affect the model selection criterion ICOMP. In a given model, the diagnostic compares the ICOMP criterion between the full data set and a case-deleted data set. The computational formula of the ICOMP criterion is evaluated using the Fisher information matrix. A simulation study is accomplished and a real data set of cancer cells is analyzed using the logistic linear mixed model for illustrating the effectiveness of the proposed diagnostic in detecting the influential cases.  相似文献   

2.
《统计学通讯:理论与方法》2012,41(13-14):2465-2489
The Akaike information criterion, AIC, and Mallows’ C p statistic have been proposed for selecting a smaller number of regressors in the multivariate regression models with fully unknown covariance matrix. All of these criteria are, however, based on the implicit assumption that the sample size is substantially larger than the dimension of the covariance matrix. To obtain a stable estimator of the covariance matrix, it is required that the dimension of the covariance matrix is much smaller than the sample size. When the dimension is close to the sample size, it is necessary to use ridge-type estimators for the covariance matrix. In this article, we use a ridge-type estimators for the covariance matrix and obtain the modified AIC and modified C p statistic under the asymptotic theory that both the sample size and the dimension go to infinity. It is numerically shown that these modified procedures perform very well in the sense of selecting the true model in large dimensional cases.  相似文献   

3.
Variable selection is fundamental to high-dimensional multivariate generalized linear models. The smoothly clipped absolute deviation (SCAD) method can solve the problem of variable selection and estimation. The choice of the tuning parameter in the SCAD method is critical, which controls the complexity of the selected model. This article proposes a criterion to select the tuning parameter for the SCAD method in multivariate generalized linear models, which is shown to be able to identify the true model consistently. Simulation studies are conducted to support theoretical findings, and two real data analysis are given to illustrate the proposed method.  相似文献   

4.
Predictive criteria, including the adjusted squared multiple correlation coefficient, the adjusted concordance correlation coefficient, and the predictive error sum of squares, are available for model selection in the linear mixed model. These criteria all involve some sort of comparison of observed values and predicted values, adjusted for the complexity of the model. The predicted values can be conditional on the random effects or marginal, i.e., based on averages over the random effects. These criteria have not been investigated for model selection success.

We used simulations to investigate selection success rates for several versions of these predictive criteria as well as several versions of Akaike's information criterion and the Bayesian information criterion, and the pseudo F-test. The simulations involved the simple scenario of selection of a fixed parameter when the covariance structure is known.

Several variance–covariance structures were used. For compound symmetry structures, higher success rates for the predictive criteria were obtained when marginal rather than conditional predicted values were used. Information criteria had higher success rates when a certain term (normally left out in SAS MIXED computations) was included in the criteria. Various penalty functions were used in the information criteria, but these had little effect on success rates. The pseudo F-test performed as expected. For the autoregressive with random effects structure, the results were the same except that success rates were higher for the conditional version of the predictive error sum of squares.

Characteristics of the data, such as the covariance structure, parameter values, and sample size, greatly impacted performance of various model selection criteria. No one criterion was consistently better than the others.  相似文献   

5.
Model-based clustering typically involves the development of a family of mixture models and the imposition of these models upon data. The best member of the family is then chosen using some criterion and the associated parameter estimates lead to predicted group memberships, or clusterings. This paper describes the extension of the mixtures of multivariate t-factor analyzers model to include constraints on the degrees of freedom, the factor loadings, and the error variance matrices. The result is a family of six mixture models, including parsimonious models. Parameter estimates for this family of models are derived using an alternating expectation-conditional maximization algorithm and convergence is determined based on Aitken’s acceleration. Model selection is carried out using the Bayesian information criterion (BIC) and the integrated completed likelihood (ICL). This novel family of mixture models is then applied to simulated and real data where clustering performance meets or exceeds that of established model-based clustering methods. The simulation studies include a comparison of the BIC and the ICL as model selection techniques for this novel family of models. Application to simulated data with larger dimensionality is also explored.  相似文献   

6.
In this article, we investigate the behavior of Bozdogan's Information criterion (ICOMP) and other information criteria in a time series context. The study entails simulating stationary autoregressive moving average models 1,000 times and then fitting different time series models to the simulated series. Different series will be considered by changing the size of the residual variance as well as the sample size of the time series. It was found that under certain conditions ICOMP selects the correct time series model most often, although it is suggested that no single information criteria should be used independently of other information criteria.  相似文献   

7.
In this paper, we extend the focused information criterion (FIC) to copula models. Copulas are often used for applications where the joint tail behavior of the variables is of particular interest, and selecting a copula that captures this well is then essential. Traditional model selection methods such as the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) aim at finding the overall best‐fitting model, which is not necessarily the one best suited for the application at hand. The FIC, on the other hand, evaluates and ranks candidate models based on the precision of their point estimates of a context‐given focus parameter. This could be any quantity of particular interest, for example, the mean, a correlation, conditional probabilities, or measures of tail dependence. We derive FIC formulae for the maximum likelihood estimator, the two‐stage maximum likelihood estimator, and the so‐called pseudo‐maximum‐likelihood (PML) estimator combined with parametric margins. Furthermore, we confirm the validity of the AIC formula for the PML estimator combined with parametric margins. To study the numerical behavior of FIC, we have carried out a simulation study, and we have also analyzed a multivariate data set pertaining to abalones. The results from the study show that the FIC successfully ranks candidate models in terms of their performance, defined as how well they estimate the focus parameter. In terms of estimation precision, FIC clearly outperforms AIC, especially when the focus parameter relates to only a specific part of the model, such as the conditional upper‐tail probability.  相似文献   

8.
Inference for a generalized linear model is generally performed using asymptotic approximations for the bias and the covariance matrix of the parameter estimators. For small experiments, these approximations can be poor and result in estimators with considerable bias. We investigate the properties of designs for small experiments when the response is described by a simple logistic regression model and parameter estimators are to be obtained by the maximum penalized likelihood method of Firth [Firth, D., 1993, Bias reduction of maximum likelihood estimates. Biometrika, 80, 27–38]. Although this method achieves a reduction in bias, we illustrate that the remaining bias may be substantial for small experiments, and propose minimization of the integrated mean square error, based on Firth's estimates, as a suitable criterion for design selection. This approach is used to find locally optimal designs for two support points.  相似文献   

9.
10.
We investigate mixed models for repeated measures data from cross-over studies in general, but in particular for data from thorough QT studies. We extend both the conventional random effects model and the saturated covariance model for univariate cross-over data to repeated measures cross-over (RMC) data; the resulting models we call the RMC model and Saturated model, respectively. Furthermore, we consider a random effects model for repeated measures cross-over data previously proposed in the literature. We assess the standard errors of point estimates and the coverage properties of confidence intervals for treatment contrasts under the various models. Our findings suggest: (i) Point estimates of treatment contrasts from all models considered are similar; (ii) Confidence intervals for treatment contrasts under the random effects model previously proposed in the literature do not have adequate coverage properties; the model therefore cannot be recommended for analysis of marginal QT prolongation; (iii) The RMC model and the Saturated model have similar precision and coverage properties; both models are suitable for assessment of marginal QT prolongation; and (iv) The Akaike Information Criterion (AIC) is not a reliable criterion for selecting a covariance model for RMC data in the following sense: the model with the smallest AIC is not necessarily associated with the highest precision for the treatment contrasts, even if the model with the smallest AIC value is also the most parsimonious model.  相似文献   

11.
ABSTRACT

We develop a new score-driven model for the joint dynamics of fat-tailed realized covariance matrix observations and daily returns. The score dynamics for the unobserved true covariance matrix are robust to outliers and incidental large observations in both types of data by assuming a matrix-F distribution for the realized covariance measures and a multivariate Student's t distribution for the daily returns. The filter for the unknown covariance matrix has a computationally efficient matrix formulation, which proves beneficial for estimation and simulation purposes. We formulate parameter restrictions for stationarity and positive definiteness. Our simulation study shows that the new model is able to deal with high-dimensional settings (50 or more) and captures unobserved volatility dynamics even if the model is misspecified. We provide an empirical application to daily equity returns and realized covariance matrices up to 30 dimensions. The model statistically and economically outperforms competing multivariate volatility models out-of-sample. Supplementary materials for this article are available online.  相似文献   

12.
Measuring a statistical model's complexity is important for model criticism and comparison. However, it is unclear how to do this for hierarchical models due to uncertainty about how to count the random effects. The authors develop a complexity measure for generalized linear hierarchical models based on linear model theory. They demonstrate the new measure for binomial and Poisson observables modeled using various hierarchical structures, including a longitudinal model and an areal‐data model having both spatial clustering and pure heterogeneity random effects. They compare their new measure to a Bayesian index of model complexity, the effective number pD of parameters (Spiegelhalter, Best, Carlin & van der Linde 2002); the comparisons are made in the binomial and Poisson cases via simulation and two real data examples. The two measures are usually close, but differ markedly in some instances where pD is arguably inappropriate. Finally, the authors show how the new measure can be used to approach the difficult task of specifying prior distributions for variance components, and in the process cast further doubt on the commonly‐used vague inverse gamma prior.  相似文献   

13.
ABSTRACT

Inflated data are prevalent in many situations and a variety of inflated models with extensions have been derived to fit data with excessive counts of some particular responses. The family of information criteria (IC) has been used to compare the fit of models for selection purposes. Yet despite the common use in statistical applications, there are not too many studies evaluating the performance of IC in inflated models. In this study, we studied the performance of IC for data with dual-inflated data. The new zero- and K-inflated Poisson (ZKIP) regression model and conventional inflated models including Poisson regression and zero-inflated Poisson (ZIP) regression were fitted for dual-inflated data and the performance of IC were compared. The effect of sample sizes and the proportions of inflated observations towards selection performance were also examined. The results suggest that the Bayesian information criterion (BIC) and consistent Akaike information criterion (CAIC) are more accurate than the Akaike information criterion (AIC) in terms of model selection when the true model is simple (i.e. Poisson regression (POI)). For more complex models, such as ZIP and ZKIP, the AIC was consistently better than the BIC and CAIC, although it did not reach high levels of accuracy when sample size and the proportion of zero observations were small. The AIC tended to over-fit the data for the POI, whereas the BIC and CAIC tended to under-parameterize the data for ZIP and ZKIP. Therefore, it is desirable to study other model selection criteria for dual-inflated data with small sample size.  相似文献   

14.
在联合广义线性模型中,散度参数与均值都被赋予了广义线性模型的结构,本文主要考虑在只有分布的一阶矩和二阶矩指定的条件下,联合广义线性模型中均值部分的变量选择问题。本文采用广义拟似然函数,提出了新的模型选择准则(EAIC);该准则是Akaike信息准则的推广。论文通过模拟研究验证了该准则的效果。  相似文献   

15.
The goal of the current paper is to compare consistent and inconsistent model selection criteria by looking at their convergence rates (to be defined in the first section). The prototypes of the two types of criteria are the AIC and BIC criterion respectively. For linear regression models with normally distributed errors, we show that the convergence rates for AIC and BIC are 0(n-1) and 0((n log n)-1/2) respectively. When the error distributions are unknown, the two criteria become indistinguishable, all having convergence rate O(n-1/2). We also argue that the BIC criterion has nearly optimal convergence rate. The results partially justified some of the controversial simulation results in which inconsistent criteria seem to outperform consistent ones.  相似文献   

16.
A regression simulation study investigates the behaviour of ICOMP, AIC, and BIC under various collinearity-, sample size-, and residual variance-levels. When the variation in the design matrix is large, as the collinearity levels in the design matrix increased, the agreement percentages for all of the information criteria decreased monotonically and that ICOMP agreed with the Kullback Leibler model more often. As the residual variance increases, the agreement percentages of all of the information criteria decreases. However, as the sample size increased the agreement percentages of all information criteria increased. When the variation in the design matrix is low and the collinearity is low, as the residual variance increases, the agreement percentages for all of the information criteria decreases monotonically such that ICOMP agreed more often with Kullback Leibler model than both AIC and BIC.  相似文献   

17.
Model selection criteria are frequently developed by constructing estimators of discrepancy measures that assess the disparity between the 'true' model and a fitted approximating model. The Akaike information criterion (AIC) and its variants result from utilizing Kullback's directed divergence as the targeted discrepancy. The directed divergence is an asymmetric measure of separation between two statistical models, meaning that an alternative directed divergence can be obtained by reversing the roles of the two models in the definition of the measure. The sum of the two directed divergences is Kullback's symmetric divergence. In the framework of linear models, a comparison of the two directed divergences reveals an important distinction between the measures. When used to evaluate fitted approximating models that are improperly specified, the directed divergence which serves as the basis for AIC is more sensitive towards detecting overfitted models, whereas its counterpart is more sensitive towards detecting underfitted models. Since the symmetric divergence combines the information in both measures, it functions as a gauge of model disparity which is arguably more balanced than either of its individual components. With this motivation, the paper proposes a new class of criteria for linear model selection based on targeting the symmetric divergence. The criteria can be regarded as analogues of AIC and two of its variants: 'corrected' AIC or AICc and 'modified' AIC or MAIC. The paper examines the selection tendencies of the new criteria in a simulation study and the results indicate that they perform favourably when compared to their AIC analogues.  相似文献   

18.
This paper presents a robust mixture modeling framework using the multivariate skew t distributions, an extension of the multivariate Student’s t family with additional shape parameters to regulate skewness. The proposed model results in a very complicated likelihood. Two variants of Monte Carlo EM algorithms are developed to carry out maximum likelihood estimation of mixture parameters. In addition, we offer a general information-based method for obtaining the asymptotic covariance matrix of maximum likelihood estimates. Some practical issues including the selection of starting values as well as the stopping criterion are also discussed. The proposed methodology is applied to a subset of the Australian Institute of Sport data for illustration.  相似文献   

19.
This paper derives Akaike information criterion (AIC), corrected AIC, the Bayesian information criterion (BIC) and Hannan and Quinn’s information criterion for approximate factor models assuming a large number of cross-sectional observations and studies the consistency properties of these information criteria. It also reports extensive simulation results comparing the performance of the extant and new procedures for the selection of the number of factors. The simulation results show the di?culty of determining which criterion performs best. In practice, it is advisable to consider several criteria at the same time, especially Hannan and Quinn’s information criterion, Bai and Ng’s ICp2 and BIC3, and Onatski’s and Ahn and Horenstein’s eigenvalue-based criteria. The model-selection criteria considered in this paper are also applied to Stock and Watson’s two macroeconomic data sets. The results differ considerably depending on the model-selection criterion in use, but evidence suggesting five factors for the first data and five to seven factors for the second data is obtainable.  相似文献   

20.
In real‐data analysis, deciding the best subset of variables in regression models is an important problem. Akaike's information criterion (AIC) is often used in order to select variables in many fields. When the sample size is not so large, the AIC has a non‐negligible bias that will detrimentally affect variable selection. The present paper considers a bias correction of AIC for selecting variables in the generalized linear model (GLM). The GLM can express a number of statistical models by changing the distribution and the link function, such as the normal linear regression model, the logistic regression model, and the probit model, which are currently commonly used in a number of applied fields. In the present study, we obtain a simple expression for a bias‐corrected AIC (corrected AIC, or CAIC) in GLMs. Furthermore, we provide an ‘R’ code based on our formula. A numerical study reveals that the CAIC has better performance than the AIC for variable selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号