首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two bimatrix distributions with beta and gamma marginals are introduced. Various properties (including product moments of determinants and traces, entropies, marginal distributions) are derived. Parameter estimation by the method of maximum likelihood is discussed. The performance and efficiencies of the maximum likelihood estimators and the associated confidence intervals are assessed by simulation. The efficiencies are compared versus those for the maximum likelihood estimators and the associated confidence intervals based on matrix variate gamma distributions. A discussion of possible applications of the bimatrix distributions is given.  相似文献   

2.
Accurate moments of maximum likelihood and moment estimators for the scale and shape parameters of a two parameter gamma density are given, the former being tabulated over a segment of the parameter space. In addition, joint acceptance regions are given for a particular case. The three parameter model is also considered and comments made on second order asymptotics for the maximum likelihood estimators  相似文献   

3.
Parameter estimates of a new distribution for the strength of brittle fibers and composite materials are considered. An algorithm for generating random numbers from the distribution is suggested. Two parameter estimation methods, one based on a simple least squares procedure and the other based on the maximum likelihood principle, are studied using Monte Carlo simulation. In most cases, the maximum likelihood estimators were found to have somewhat smaller root mean squared error and bias than the least squares estimators. However, the least squares estimates are generally good and provide useful initial values for the numerical iteration used to find the maximum likelihood estimates.  相似文献   

4.
This paper presents a methodology based on transforming estimation methods in optimization problems in order to incorporate in a natural way some constraints that contain extra information not considered by standard estimation methods, with the aim of improving the quality of the parameter estimates. We include here three types of such information: bounds for the cumulative distribution function, bounds for the quantiles, and any restrictions on the parameters such as those imposed by the support of the random variable under consideration. The method is quite general and can be applied to many estimation methods such as the maximum likelihood (ML), the method of moments (MOM), the least squares, the least absolute values, and the minimax methods. The performances of the obtained estimates from several families of distributions are investigated for the ML and the MOM, using simulations. The simulation results show that for small sample sizes important gains can be achieved with respect to the case where the above information is ignored. In addition, we discuss sensitivity analysis methods for assessing the influence of observations on the proposed estimators. The method applies to both univariate and multivariate data.  相似文献   

5.
In this article, we proposed a new three-parameter probability distribution, called Topp–Leone normal, for modelling increasing failure rate data. The distribution is obtained by using Topp–Leone-X family of distributions with normal as a baseline model. The basic properties including moments, quantile function, stochastic ordering and order statistics are derived here. The estimation of unknown parameters is approached by the method of maximum likelihood, least squares, weighted least squares and maximum product spacings. An extensive simulation study is carried out to compare the long-run performance of the estimators. Applicability of the distribution is illustrated by means of three real data analyses over existing distributions.  相似文献   

6.
A regression model is considered in which the response variable has a type 1 extreme-value distribution for smallest values. Bias approximations for the maximum likelihood estimators are pivm and a bias reduction estimator for the scale parameter is proposed. The small sample moment properties of the maximum likelihood estimators are compared with the properties of the ordinary least squares estimators and the best linear unbiased estimators based on order statistics for grouped data.  相似文献   

7.
We consider the estimation of the expected sojourn time in a Markov renewal process under the data condition that only the counts of the exits from the states are available for fixed intervals of time. For analytical and illustrative purposes we concentrate on the two-state process case. We present least squares and method of moments estimators and compare their statistical properties both analytically and empirically. We also present modified estimators with improved properties based upon an overlapping interval sampling strategy. The major results indicate that the least squares estimator is biased in general with the bias depending on the size of the sampling interval and the first two moments of the sojourn time distribution function. The bias becomes negligible as the size of the sampling interval increases. Analytical and empirical results indicate that the method of moments estimator is less sensitive to the size of the sampling interval and has slightly better mean squared error properties than the least squares estimator.  相似文献   

8.
Abstract

Statistical distributions are very useful in describing and predicting real world phenomena. In many applied areas there is a clear need for the extended forms of the well-known distributions. Generally, the new distributions are more flexible to model real data that present a high degree of skewness and kurtosis. The choice of the best-suited statistical distribution for modeling data is very important.

In this article, we proposed an extended generalized Gompertz (EGGo) family of EGGo. Certain statistical properties of EGGo family including distribution shapes, hazard function, skewness, limit behavior, moments and order statistics are discussed. The flexibility of this family is assessed by its application to real data sets and comparison with other competing distributions. The maximum likelihood equations for estimating the parameters based on real data are given. The performances of the estimators such as maximum likelihood estimators, least squares estimators, weighted least squares estimators, Cramer-von-Mises estimators, Anderson-Darling estimators and right tailed Anderson-Darling estimators are discussed. The likelihood ratio test is derived to illustrate that the EGGo distribution is better than other nested models in fitting data set or not. We use R software for simulation in order to perform applications and test the validity of this model.  相似文献   

9.
Asymptotic distributions of the maximum likelihood estimators of the regression coefficients and knot points for the polynomial spline regression models with unknown knots and AR(1) errors have been derived by Chan (1989). Chan showed that under some mild conditions the maximum likelihood estimators, after suitable standardization, asymptotically follow normal distributions as n diverges to infinity. For the calculations of the maximum likelihood estimators, iterative methods must be applied. But this is not easy to implement for the model considered. In this paper, we suggested an alternative method to compute the estimates of the regression parameters and knots. It is shown that the estimates obtained by this method are asymptotically equivalent to the maximum likelihood estimates considered by Chan.  相似文献   

10.
The purpose of this article is to investigate estimation and hypothesis testing by maximum likelihood and method of moments in functional models within the class of elliptical symmetric distributions. The main results encompass consistency and asymptotic normality of the method of moments estimators. Also, the asymptotic covariance matrix of the maximum likelihood estimator is derived, extending some existing results in elliptical distributions. A measure of asymptotic relative efficiency is reported. Wald-type statistics are considered and numerical results obtained by Monte Carlo simulation to investigate the performance of estimators and tests are provided for Student-t and contaminated normal distributions. An application to a real dataset is also included.  相似文献   

11.
In this article, we propose a nonparametric estimator for percentiles of the time-to-failure distribution obtained from a linear degradation model using the kernel density method. The properties of the proposed kernel estimator are investigated and compared with well-known maximum likelihood and ordinary least squares estimators via a simulation technique. The mean squared error and the length of the bootstrap confidence interval are used as the basis criteria of the comparisons. The simulation study shows that the performance of the kernel estimator is acceptable as a general estimator. When the distribution of the data is assumed to be known, the maximum likelihood and ordinary least squares estimators perform better than the kernel estimator, while the kernel estimator is superior when the assumption of our knowledge of the data distribution is violated. A comparison among different estimators is achieved using a real data set.  相似文献   

12.
This paper discusses the problem of statistical inference in multivariate linear regression models when the errors involved are non normally distributed. We consider multivariate t-distribution, a fat-tailed distribution, for the errors as alternative to normal distribution. Such non normality is commonly observed in working with many data sets, e.g., financial data that are usually having excess kurtosis. This distribution has a number of applications in many other areas of research as well. We use modified maximum likelihood estimation method that provides the estimator, called modified maximum likelihood estimator (MMLE), in closed form. These estimators are shown to be unbiased, efficient, and robust as compared to the widely used least square estimators (LSEs). Also, the tests based upon MMLEs are found to be more powerful than the similar tests based upon LSEs.  相似文献   

13.
A new algorithm is stated for the evaluation of the maximum likelihood estimators of the two-parameter gamma density. This, along with other approximations, is used to evaluate by quadrature, moments of the estimators of the shape and scale parameters.  相似文献   

14.
The Burr XII distribution offers a flexible alternative to the distributions that play important role for modelling data in reliability, risk and process capability. However, estimating the shape parameters of the Burr XII distribution is a challenging problem. The classical estimation methods such as maximum likelihood and least squares are often used to estimate the parameters of the Burr XII distribution, but these methods are very sensitive to the outliers in the data. Thus, a robust estimation method alternative to the classical methods is needed to find robust estimators that are less sensitive to the outliers in the data. The purpose of this paper is to use the optimal B-robust estimation method [Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA. Robust statistics: the approach based on influence functions. New York: Wiley; 1986] to obtain robust estimators for the shape parameters of the Burr XII distribution. The simulation results show that the optimal B-robust estimators generally outperform the classical estimators in terms of the bias and root mean square errors when there are outliers in data.  相似文献   

15.
For the three-parameter gamma distribution, it is known that the method of moments as well as the maximum likelihood method have difficulties such as non-existence in some range of the parameters, convergence problems, and large variability. For this reason, in this article, we propose a method of estimation based on a transformation involving order statistics from the sample. In this method, the estimates always exist uniquely over the entire parameter space, and the estimators also have consistency over the entire parameter space. The bias and mean squared error of the estimators are also examined by means of a Monte Carlo simulation study, and the empirical results show the small-sample superiority in addition to the desirable large sample properties.  相似文献   

16.
The problem of estimation of a parameter of interest in the presence of a nuisance parameter, which is either location or scale, is considered. Three estimators are taken into account: usual maximum likelihood (ML) estimator, maximum integrated likelihood estimator and the bias-corrected ML estimator. General results on comparison of these estimators w.r.t. the second-order risk based on the mean-squared error are obtained. Possible improvements of basic estimators via the notion of admissibility and methodology given in Ghosh and Sinha [A necessary and sufficient condition for second order admissibility with applications to Berkson's bioassay problem. Ann Stat. 1981;9(6):1334–1338] are considered. In the recent paper by Tanaka et al. [On improved estimation of a gamma shape parameter. Statistics. 2014; doi:10.1080/02331888.2014.915842], this problem was considered for estimating the shape parameter of gamma distribution. Here, we perform more accurate comparison of estimators for this case as well as for some other cases.  相似文献   

17.
The odd Weibull distribution is a three-parameter generalization of the Weibull and the inverse Weibull distributions having rich density and hazard shapes for modeling lifetime data. This paper explored the odd Weibull parameter regions having finite moments and examined the relation to some well-known distributions based on skewness and kurtosis functions. The existence of maximum likelihood estimators have shown with complete data for any sample size. The proof for the uniqueness of these estimators is given only when the absolute value of the second shape parameter is between zero and one. Furthermore, elements of the Fisher information matrix are obtained based on complete data using a single integral representation which have shown to exist for any parameter values. The performance of the odd Weibull distribution over various density and hazard shapes is compared with generalized gamma distribution using two different test statistics. Finally, analysis of two data sets has been performed for illustrative purposes.  相似文献   

18.
Recent small sample studies of estimators for the shape parameter a of the negative binomial distribution (NBD) tend to indicate that the choice of estimator can be reduced to a choice between the method of moments estimator, maximum likelihood estimator (MLE), maximum quasi-likelihood estimator and the conditional likelihood estimator (CLE). In this paper the results of a comprehensive simulation study are reported to assist with the choice from these four estimators. The study includes a traditional procedure for assessing estimators for the shape parameter of the NBD and in addition introduces an alternative assessment procedure. Based on the traditional approach the CLE is considered to perform the best overall for the range of parameter values and sample sizes considered. The alternative assessment procedure indicates that the MLE is the preferred estimator.  相似文献   

19.
It is well-known that maximum likelihood (ML) estimators of the two parameters in a gamma distribution do not have closed forms. This poses difficulties in some applications such as real-time signal processing using low-grade processors. The gamma distribution is a special case of a generalized gamma distribution. Surprisingly, two out of the three likelihood equations of the generalized gamma distribution can be used as estimating equations for the gamma distribution, based on which simple closed-form estimators for the two gamma parameters are available. Intuitively, performance of the new estimators based on likelihood equations should be close to the ML estimators. The study consolidates this conjecture by establishing the asymptotic behaviors of the new estimators. In addition, the closed-forms enable bias-corrections to these estimators. The bias-correction significantly improves the small-sample performance.  相似文献   

20.
Estimation of each of and linear functions of two order restricted normal means is considered when variances are unknown and possibly unequal. We replace unknown variances with sample variances and construct isotonic regression estimators, which we call in our paper the plug-in estimators, to estimate ordered normal means. Under squared error loss, a necessary and sufficient condition is given for the plug-in estimators to improve upon the unrestricted maximum likelihood estimators uniformly. As for the estimation of linear functions of ordered normal means, we also show that when variances are known, the restricted maximum likelihood estimator always improves upon the unrestricted maximum likelihood estimator uniformly, but when variances are unknown, the plug-in estimator does not always improve upon the unrestricted maximum likelihood estimator uniformly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号