共查询到20条相似文献,搜索用时 0 毫秒
1.
A bandwidth selection based on Linex discrepancy is proposed for kernel smoothing of periodogram. The selection minimizes Linex discrepancy between the smoothed and true spectrums. Two estimators are introduced for Linex discrepancy. The bandwidth choice outperforms some common bandwidth choices. 相似文献
2.
Wafaa Benyelles 《Journal of applied statistics》2012,39(8):1703-1718
We consider a continuous time random process with functional autoregressive representation. We state statistical results on a mean functional estimator determining a minimum distance estimator of the period giving consistency and a limit law stated in Mourid and Benyelles [13]. Then we discuss their performance on numerical simulations and on real data analyzing the cycle of a climatic phenomena. 相似文献
3.
AbstractIn the model selection problem, the consistency of the selection criterion has been often discussed. This paper derives a family of criteria based on a robust statistical divergence family by using a generalized Bayesian procedure. The proposed family can achieve both consistency and robustness at the same time since it has good performance with respect to contamination by outliers under appropriate circumstances. We show the selection accuracy of the proposed criterion family compared with the conventional methods through numerical experiments. 相似文献
4.
5.
6.
For the functional errors-in-varinbles regression model, we define a class of robust regression estimators and study their properties 相似文献
7.
M. L. Martin-Magniette 《Journal of the Royal Statistical Society. Series C, Applied statistics》2005,54(2):317-331
Summary. Controversy has intensified regarding the death-rate from cancer that is induced by a dose of radiation. In the models that are usually considered the hazard function is an increasing function of the dose of radiation. Such models can mask local variations. We consider the models of excess relative risk and of absolute risk and propose a nonparametric estimation of the effect of the dose by using a model selection procedure. This estimation deals with stratified data. We approximate the function of the dose by a collection of splines and select the best one according to the Akaike information criterion. In the same way between the models of excess relative risk or excess absolute risk, we choose the model that best fits the data. We propose a bootstrap method for calculating a pointwise confidence interval of the dose function. We apply our method for estimating the solid cancer and leukaemia death hazard functions to Hiroshima. 相似文献
8.
When selecting a model, robustness is a desirable property. However, most model selection criteria that are based on the Kullback–Leibler divergence tend to have reduced performance when the data are contaminated by outliers. In this paper, we derive and investigate a family of criteria that generalize the Akaike information criterion (AIC). When applied to a polynomial regression model, in the non contaminated case, the performance of this family of criteria is asymptotically equal to that of the AIC. Moreover, the proposed criteria tend to maintain sufficient levels of performance even in the presence of outliers. 相似文献
9.
C. S. Wong & W. K. Li 《Journal of the Royal Statistical Society. Series B, Statistical methodology》2000,62(1):95-115
We generalize the Gaussian mixture transition distribution (GMTD) model introduced by Le and co-workers to the mixture autoregressive (MAR) model for the modelling of non-linear time series. The models consist of a mixture of K stationary or non-stationary AR components. The advantages of the MAR model over the GMTD model include a more full range of shape changing predictive distributions and the ability to handle cycles and conditional heteroscedasticity in the time series. The stationarity conditions and autocorrelation function are derived. The estimation is easily done via a simple EM algorithm and the model selection problem is addressed. The shape changing feature of the conditional distributions makes these models capable of modelling time series with multimodal conditional distributions and with heteroscedasticity. The models are applied to two real data sets and compared with other competing models. The MAR models appear to capture features of the data better than other competing models do. 相似文献
10.
Darren Homrighausen 《Journal of Statistical Computation and Simulation》2018,88(15):2865-2892
High-dimensional predictive models, those with more measurements than observations, require regularization to be well defined, perform well empirically, and possess theoretical guarantees. The amount of regularization, often determined by tuning parameters, is integral to achieving good performance. One can choose the tuning parameter in a variety of ways, such as through resampling methods or generalized information criteria. However, the theory supporting many regularized procedures relies on an estimate for the variance parameter, which is complicated in high dimensions. We develop a suite of information criteria for choosing the tuning parameter in lasso regression by leveraging the literature on high-dimensional variance estimation. We derive intuition showing that existing information-theoretic approaches work poorly in this setting. We compare our risk estimators to existing methods with an extensive simulation and derive some theoretical justification. We find that our new estimators perform well across a wide range of simulation conditions and evaluation criteria. 相似文献
11.
Rachel J. Mackay 《Revue canadienne de statistique》2002,30(4):573-589
While the estimation of the parameters of a hidden Markov model has been studied extensively, the consistent estimation of the number of hidden states is still an unsolved problem. The AIC and BIC methods are used most commonly, but their use in this context has not been justified theoretically. The author shows that for many common models, the penalized minimum‐distance method yields a consistent estimate of the number of hidden states in a stationary hidden Markov model. In addition to addressing the identifiability issues, she applies her method to a multiple sclerosis data set and assesses its performance via simulation. 相似文献
12.
The aim of this work is the discussion and investigation of measures of divergence and model selection criteria. A recently introduced measure of divergence, the so-called BHHJ measure (Basu, A., Harris, I.R., Hjort, N.L., Jones, M.C., 1998. Robust and efficient estimation by minimising a density power divergence. Biometrika 85, 549–559) is investigated and a new model selection criterion the divergence information criterion (DIC) based on this measure is proposed. Simulations are performed to check the appropriateness of the proposed criterion. 相似文献
13.
We study model selection and model averaging in semiparametric partially linear models with missing responses. An imputation method is used to estimate the linear regression coefficients and the nonparametric function. We show that the corresponding estimators of the linear regression coefficients are asymptotically normal. Then a focused information criterion and frequentist model average estimators are proposed and their theoretical properties are established. Simulation studies are performed to demonstrate the superiority of the proposed methods over the existing strategies in terms of mean squared error and coverage probability. Finally, the approach is applied to a real data case. 相似文献
14.
It is often of interest to use regression analysis to study the relationship between occurrence of events in space and spatially-indexed covariates. One model for such regression analysis is the Poisson point process. Here, we develop a method to perform the selection of covariates and the estimation of model parameters simultaneously for this model via a regularization method. We assess the finite-sample properties of our method with a simulation study. In addition, we propose a variant of our method that allows the selection of covariates at multiple pixel resolutions. For illustration, we consider the locations of a tree species, Beilschmiedia pendula, in a study plot at Barro Colorado Island in central Panama. We find that Beilschmiedia pendula occurs in greater abundance at locations with higher elevation and steeper slope. Also, we identify three species to which Beilschmiedia pendula tends to be attracted, two species by which it appears to be repelled, and a species with no apparent relationship. 相似文献
15.
This article discusses the estimation of the parameter function for a functional linear regression model under heavy-tailed errors' distributions and in the presence of outliers. Standard approaches of reducing the high dimensionality, which is inherent in functional data, are considered. After reducing the functional model to a standard multiple linear regression model, a weighted rank-based procedure is carried out to estimate the regression parameters. A Monte Carlo simulation and a real-world example are used to show the performance of the proposed estimator and a comparison made with the least-squares and least absolute deviation estimators. 相似文献
16.
Given a set of possible models for variables X and a set of possible parameters for each model, the Bayesian estimate of the probability distribution for X given observed data is obtained by averaging over the possible models and their parameters. An often-used approximation for this estimate is obtained by selecting a single model and averaging over its parameters. The approximation is useful because it is computationally efficient, and because it provides a model that facilitates understanding of the domain. A common criterion for model selection is the posterior probability of the model. Another criterion for model selection, proposed by San Martini and Spezzafari (1984), is the predictive performance of a model for the next observation to be seen. From the standpoint of domain understanding, both criteria are useful, because one identifies the model that is most likely, whereas the other identifies the model that is the best predictor of the next observation. To highlight the difference, we refer to the posterior-probability and alternative criteria as the scientific criterion (SC) and engineering criterion (EC), respectively. When we are interested in predicting the next observation, the model-averaged estimate is at least as good as that produced by EC, which itself is at least as good as the estimate produced by SC. We show experimentally that, for Bayesian-network models containing discrete variables only, the predictive performance of the model average can be significantly better than those of single models selected by either criterion, and that differences between models selected by the two criterion can be substantial. 相似文献
17.
The nonlinear responses of species to environmental variability can play an important role in the maintenance of ecological diversity. Nonetheless, many models use parametric nonlinear terms which pre-determine the ecological conclusions. Motivated by this concern, we study the estimate of the second derivative (curvature) of the link function in a functional single index model. Since the coefficient function and the link function are both unknown, the estimate is expressed as a nested optimization. We first estimate the coefficient function by minimizing squared error where the link function is estimated with a Nadaraya-Watson estimator for each candidate coefficient function. The first and second derivatives of the link function are then estimated via local-quadratic regression using the estimated coefficient function. In this paper, we derive a convergence rate for the curvature of the nonlinear response. In addition, we prove that the argument of the linear predictor can be estimated root-n consistently. However, practical implementation of the method requires solving a nonlinear optimization problem, and our results show that the estimates of the link function and the coefficient function are quite sensitive to the choices of starting values. 相似文献
18.
A robust procedure is developed for testing the equality of means in the two sample normal model. This is based on the weighted likelihood estimators of Basu et al. (1993). When the normal model is true the tests proposed have the same asymptotic power as the two sample Student's t-statistic in the equal variance case. However, when the normality assumptions are only approximately true the proposed tests can be substantially more powerful than the classical tests. In a Monte Carlo study for the equal variance case under various outlier models the proposed test using Hellinger distance based weighted likelihood estimator compared favorably with the classical test as well as the robust test proposed by Tiku (1980). 相似文献
19.
In this paper, a new estimation procedure based on composite quantile regression and functional principal component analysis (PCA) method is proposed for the partially functional linear regression models (PFLRMs). The proposed estimation method can simultaneously estimate both the parametric regression coefficients and functional coefficient components without specification of the error distributions. The proposed estimation method is shown to be more efficient empirically for non-normal random error, especially for Cauchy error, and almost as efficient for normal random errors. Furthermore, based on the proposed estimation procedure, we use the penalized composite quantile regression method to study variable selection for parametric part in the PFLRMs. Under certain regularity conditions, consistency, asymptotic normality, and Oracle property of the resulting estimators are derived. Simulation studies and a real data analysis are conducted to assess the finite sample performance of the proposed methods. 相似文献
20.
Jiwoong Kim 《Journal of Statistical Computation and Simulation》2018,88(3):482-497
Application of the minimum distance (MD) estimation method to the linear regression model for estimating regression parameters is a difficult and time-consuming process due to the complexity of its distance function, and hence, it is computationally expensive. To deal with the computational cost, this paper proposes a fast algorithm which makes the best use of coordinate-wise minimization technique in order to obtain the MD estimator. R package (KoulMde) based on the proposed algorithm and written in Rcpp is available online. 相似文献