首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under the case-cohort design introduced by Prentice (Biometrica 73:1–11, 1986), the covariate histories are ascertained only for the subjects who experience the event of interest (i.e., the cases) during the follow-up period and for a relatively small random sample from the original cohort (i.e., the subcohort). The case-cohort design has been widely used in clinical and epidemiological studies to assess the effects of covariates on failure times. Most statistical methods developed for the case-cohort design use the proportional hazards model, and few methods allow for time-varying regression coefficients. In addition, most methods disregard data from subjects outside of the subcohort, which can result in inefficient inference. Addressing these issues, this paper proposes an estimation procedure for the semiparametric additive hazards model with case-cohort/two-phase sampling data, allowing the covariates of interest to be missing for cases as well as for non-cases. A more flexible form of the additive model is considered that allows the effects of some covariates to be time varying while specifying the effects of others to be constant. An augmented inverse probability weighted estimation procedure is proposed. The proposed method allows utilizing the auxiliary information that correlates with the phase-two covariates to improve efficiency. The asymptotic properties of the proposed estimators are established. An extensive simulation study shows that the augmented inverse probability weighted estimation is more efficient than the widely adopted inverse probability weighted complete-case estimation method. The method is applied to analyze data from a preventive HIV vaccine efficacy trial.  相似文献   

2.
ABSTRACT

The generalized case-cohort design is widely used in large cohort studies to reduce the cost and improve the efficiency. Taking prior information of parameters into consideration in modeling process can further raise the inference efficiency. In this paper, we consider fitting proportional hazards model with constraints for generalized case-cohort studies. We establish a working likelihood function for the estimation of model parameters. The asymptotic properties of the proposed estimator are derived via the Karush-Kuhn-Tucker conditions, and their finite properties are assessed by simulation studies. A modified minorization-maximization algorithm is developed for the numerical calculation of the constrained estimator. An application to a Wilms tumor study demonstrates the utility of the proposed method in practice.  相似文献   

3.
The case-cohort design is commonly used in epidemiological studies due to its cost-effectiveness. The additive hazards model is widely used in survival analysis when the hazards difference is constant. In this article, we propose a class of goodness-of-fit test statistics for the assumption of the additive hazards model with case-cohort data through a class of asymptotically mean-zero multiparameter stochastic processes. We also establish the asymptotic theory of the proposed test statistics and a resampling scheme is adopted to approximate its asymptotic distribution. The performance of the proposed test statistics is evaluated through simulation studies and a real dataset is analyzed to illustrate the proposed method.  相似文献   

4.
Exposure Stratified Case-Cohort Designs   总被引:5,自引:1,他引:4  
A variant of the case-cohort design is proposed for the situation in which a correlate of the exposure (or prognostic factor) of interest is available for all cohort members, and exposure information is to be collected for a case-cohort sample. The cohort is stratified according to the correlate, and the subcohort is selected by stratified random sampling. A number of possible methods for the analysis of such exposure stratified case-cohort samples are presented, some of their statistical properties developed, and approximate relative efficiency and optimal allocation to the strata discussed. The methods are compared to each other, and to randomly sampled case-cohort studies, in a limited computer simulation study. We found that all of the proposed analysis methods performed well and were more efficient than a randomly sampled case-cohort study.  相似文献   

5.
In stratified case-cohort designs, samplings of case-cohort samples are conducted via a stratified random sampling based on covariate information available on the entire cohort members. In this paper, we extended the work of Kang & Cai (2009) to a generalized stratified case-cohort study design for failure time data with multiple disease outcomes. Under this study design, we developed weighted estimating procedures for model parameters in marginal multiplicative intensity models and for the cumulative baseline hazard function. The asymptotic properties of the estimators are studied using martingales, modern empirical process theory, and results for finite population sampling.  相似文献   

6.
The case-cohort study design is widely used to reduce cost when collecting expensive covariates in large cohort studies with survival or competing risks outcomes. A case-cohort study dataset consists of two parts: (a) a random sample and (b) all cases or failures from a specific cause of interest. Clinicians often assess covariate effects on competing risks outcomes. The proportional subdistribution hazards model directly evaluates the effect of a covariate on the cumulative incidence function under the non-covariate-dependent censoring assumption for the full cohort study. However, the non-covariate-dependent censoring assumption is often violated in many biomedical studies. In this article, we propose a proportional subdistribution hazards model for case-cohort studies with stratified data with covariate-adjusted censoring weight. We further propose an efficient estimator when extra information from the other causes is available under case-cohort studies. The proposed estimators are shown to be consistent and asymptotically normal. Simulation studies show (a) the proposed estimator is unbiased when the censoring distribution depends on covariates and (b) the proposed efficient estimator gains estimation efficiency when using extra information from the other causes. We analyze a bone marrow transplant dataset and a coronary heart disease dataset using the proposed method.  相似文献   

7.
The case-cohort design is widely used as a means of reducing the cost in large cohort studies, especially when the disease rate is low and covariate measurements may be expensive, and has been discussed by many authors. In this paper, we discuss regression analysis of case-cohort studies that produce interval-censored failure time with dependent censoring, a situation for which there does not seem to exist an established approach. For inference, a sieve inverse probability weighting estimation procedure is developed with the use of Bernstein polynomials to approximate the unknown baseline cumulative hazard functions. The proposed estimators are shown to be consistent and the asymptotic normality of the resulting regression parameter estimators is established. A simulation study is conducted to assess the finite sample properties of the proposed approach and indicates that it works well in practical situations. The proposed method is applied to an HIV/AIDS case-cohort study that motivated this investigation.  相似文献   

8.
Nested case-control and case-cohort studies are useful for studying associations between covariates and time-to-event when some covariates are expensive to measure. Full covariate information is collected in the nested case-control or case-cohort sample only, while cheaply measured covariates are often observed for the full cohort. Standard analysis of such case-control samples ignores any full cohort data. Previous work has shown how data for the full cohort can be used efficiently by multiple imputation of the expensive covariate(s), followed by a full-cohort analysis. For large cohorts this is computationally expensive or even infeasible. An alternative is to supplement the case-control samples with additional controls on which cheaply measured covariates are observed. We show how multiple imputation can be used for analysis of such supersampled data. Simulations show that this brings efficiency gains relative to a traditional analysis and that the efficiency loss relative to using the full cohort data is not substantial.  相似文献   

9.
The case-cohort design brings cost reduction in large cohort studies. In this paper, we consider a nonlinear quantile regression model for censored competing risks under the case-cohort design. Two different estimation equations are constructed with or without the covariates information of other risks included, respectively. The large sample properties of the estimators are obtained. The asymptotic covariances are estimated by using a fast resampling method, which is useful to consider further inferences. The finite sample performance of the proposed estimators is assessed by simulation studies. Also a real example is used to demonstrate the application of the proposed methods.  相似文献   

10.
Semiparametric accelerated failure time (AFT) models directly relate the expected failure times to covariates and are a useful alternative to models that work on the hazard function or the survival function. For case-cohort data, much less development has been done with AFT models. In addition to the missing covariates outside of the sub-cohort in controls, challenges from AFT model inferences with full cohort are retained. The regression parameter estimator is hard to compute because the most widely used rank-based estimating equations are not smooth. Further, its variance depends on the unspecified error distribution, and most methods rely on computationally intensive bootstrap to estimate it. We propose fast rank-based inference procedures for AFT models, applying recent methodological advances to the context of case-cohort data. Parameters are estimated with an induced smoothing approach that smooths the estimating functions and facilitates the numerical solution. Variance estimators are obtained through efficient resampling methods for nonsmooth estimating functions that avoids full blown bootstrap. Simulation studies suggest that the recommended procedure provides fast and valid inferences among several competing procedures. Application to a tumor study demonstrates the utility of the proposed method in routine data analysis.  相似文献   

11.
Case-cohort designs are commonly used in large epidemiological studies to reduce the cost associated with covariate measurement. In many such studies the number of covariates is very large. An efficient variable selection method is needed for case-cohort studies where the covariates are only observed in a subset of the sample. Current literature on this topic has been focused on the proportional hazards model. However, in many studies the additive hazards model is preferred over the proportional hazards model either because the proportional hazards assumption is violated or the additive hazards model provides more relevent information to the research question. Motivated by one such study, the Atherosclerosis Risk in Communities (ARIC) study, we investigate the properties of a regularized variable selection procedure in stratified case-cohort design under an additive hazards model with a diverging number of parameters. We establish the consistency and asymptotic normality of the penalized estimator and prove its oracle property. Simulation studies are conducted to assess the finite sample performance of the proposed method with a modified cross-validation tuning parameter selection methods. We apply the variable selection procedure to the ARIC study to demonstrate its practical use.  相似文献   

12.
Recognizing that the efficiency in relative risk estimation for the Cox proportional hazards model is largely constrained by the total number of cases, Prentice (1986) proposed the case-cohort design in which covariates are measured on all cases and on a random sample of the cohort. Subsequent to Prentice, other methods of estimation and sampling have been proposed for these designs. We formalize an approach to variance estimation suggested by Barlow (1994), and derive a robust variance estimator based on the influence function. We consider the applicability of the variance estimator to all the proposed case-cohort estimators, and derive the influence function when known sampling probabilities in the estimators are replaced by observed sampling fractions. We discuss the modifications required when cases are missing covariate information. The missingness may occur by chance, and be completely at random; or may occur as part of the sampling design, and depend upon other observed covariates. We provide an adaptation of S-plus code that allows estimating influence function variances in the presence of such missing covariates. Using examples from our current case-cohort studies on esophageal and gastric cancer, we illustrate how our results our useful in solving design and analytic issues that arise in practice.  相似文献   

13.
Stratified Case-Cohort Analysis of General Cohort Sampling Designs   总被引:1,自引:0,他引:1  
Abstract.  It is shown that variance estimates for regression coefficients in exposure-stratified case-cohort studies (Borgan et al ., Lifetime Data Anal., 6, 2000, 39–58) can easily be obtained from influence terms routinely calculated in the standard software for Cox regression. By allowing for post-stratification on outcome we also place the estimators proposed by Chen ( J. R. Statist. Soc. Ser. B , 63, 2001, 791–809) for a general class of cohort sampling designs within the Borgan et al. 's framework, facilitating simple variance estimation for these designs. Finally, the Chen approach is extended to accommodate stratified designs with surrogate variables available for all cohort members, such as stratified case-cohort and counter-matching designs.  相似文献   

14.
A common objective of cohort studies and clinical trials is to assess time-varying longitudinal continuous biomarkers as correlates of the instantaneous hazard of a study endpoint. We consider the setting where the biomarkers are measured in a designed sub-sample (i.e., case-cohort or two-phase sampling design), as is normative for prevention trials. We address this problem via joint models, with underlying biomarker trajectories characterized by a random effects model and their relationship with instantaneous risk characterized by a Cox model. For estimation and inference we extend the conditional score method of Tsiatis and Davidian (Biometrika 88(2):447–458, 2001) to accommodate the two-phase biomarker sampling design using augmented inverse probability weighting with nonparametric kernel regression. We present theoretical properties of the proposed estimators and finite-sample properties derived through simulations, and illustrate the methods with application to the AIDS Clinical Trials Group 175 antiretroviral therapy trial. We discuss how the methods are useful for evaluating a Prentice surrogate endpoint, mediation, and for generating hypotheses about biological mechanisms of treatment efficacy.  相似文献   

15.
Semiparametric transformation models provide flexible regression models for survival analysis, including the Cox proportional hazards and the proportional odds models as special cases. We consider the application of semiparametric transformation models in case-cohort studies, where the covariate data are observed only on cases and on a subcohort randomly sampled from the full cohort. We first propose an approximate profile likelihood approach with full-cohort data, which amounts to the pseudo-partial likelihood approach of Zucker [2005. A pseudo-partial likelihood method for semiparametric survival regression with covariate errors. J. Amer. Statist. Assoc. 100, 1264–1277]. Simulation results show that our proposal is almost as efficient as the nonparametric maximum likelihood estimator. We then extend this approach to the case-cohort design, applying the Horvitz–Thompson weighting method to the estimating equations from the approximated profile likelihood. Two levels of weights can be utilized to achieve unbiasedness and to gain efficiency. The resulting estimator has a closed-form asymptotic covariance matrix, and is found in simulations to be substantially more efficient than the estimator based on martingale estimating equations. The extension to left-truncated data will be discussed. We illustrate the proposed method on data from a cardiovascular risk factor study conducted in Taiwan.  相似文献   

16.
We present a hierarchical frailty model based on distributions derived from non-negative Lévy processes. The model may be applied to data with several levels of dependence, such as family data or other general clusters, and is an alternative to additive frailty models. We present several parametric examples of the model, and properties such as expected values, variance and covariance. The model is applied to a case-cohort sample of age at onset for melanoma from the Swedish Multi-Generation Register, organized in nuclear families of parents and one or two children. We compare the genetic component of the total frailty variance to the common environmental term, and estimate the effect of birth cohort and gender.  相似文献   

17.
Two-phase stratified sampling has been extensively used in large epidemiologic studies as a way of reducing costs associated with assembling covariate histories and enlarging relative sample sizes of the most informative subgroups. In this article, we investigate case-cohort sampled current status data under the additive risk model assumption. We describe a class of estimating equations, each depending on a different prevalence ratio estimate. Asymptotic properties of the proposed estimators and inference based on the “m out of n” nonparametric bootstrap are investigated. A small simulation study is employed to evaluate the finite sample performance and relative efficiency of the proposed estimators.  相似文献   

18.
Genetic data are now collected frequently in clinical studies and epidemiological cohort studies. For a large study, it may be prohibitively expensive to genotype all study subjects, especially with the next-generation sequencing technology. Two-phase sampling, such as case-cohort and nested case-control sampling, is cost-effective in such settings but entails considerable analysis challenges, especially if efficient estimators are desired. Another type of missing data arises when the investigators are interested in the haplotypes or the genetic markers that are not on the genotyping platform used for the current study. Valid and efficient analysis of such missing data is also interesting and challenging. This article provides an overview of these issues and outlines some directions for future research.  相似文献   

19.
A case–cohort design was proposed by Prentice (1986) Prentice, R.L. (1986). A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika 73:111.[Crossref], [Web of Science ®] [Google Scholar] in order to reduce costs. It involves the collection of covariate data from all subjects who experience the event of interest, and from the members of a random subcohort. This case–cohort design has been extensively studied, but is exclusively considered for right-censored data. In this article, we propose case–cohort designs adapted to length-biased data under the proportional hazards assumption. A pseudo-likelihood procedure is described for estimating parameters and the corresponding cumulative hazard function. The large sample properties, such as consistency and weak convergence, for such pseudo-likelihood estimators are presented. We also conduct simulation studies to show that the proposed estimators are appropriate for practical use. A real Oscar Awards data is provided.  相似文献   

20.
Computing the Cox Model for Case Cohort Designs   总被引:2,自引:1,他引:1  
Prentice (1986) proposed a case-cohort design as an efficient subsampling mechanism for survival studies. Several other authors have expanded on these ideas to create a family of related sampling plans, along with estimators for the covariate effects. We describe how to obtain the proposed parameter estimates and their variance estimates using standard software packages, with SAS and SPLUS as particular examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号