首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The paper studies a generalization of the Independent Set problem (IS for short). A distance- $d$ independent set for an integer $d\ge 2$ in an unweighted graph $G = (V, E)$ is a subset $S\subseteq V$ of vertices such that for any pair of vertices $u, v \in S$ , the distance between $u$ and $v$ is at least $d$ in $G$ . Given an unweighted graph $G$ and a positive integer $k$ , the Distance- $d$ Independent Set problem (D $d$ IS for short) is to decide whether $G$ contains a distance- $d$ independent set $S$ such that $|S| \ge k$ . D2IS is identical to the original IS. Thus D2IS is $\mathcal{NP}$ -complete even for planar graphs, but it is in $\mathcal{P}$ for bipartite graphs and chordal graphs. In this paper we investigate the computational complexity of D $d$ IS, its maximization version MaxD $d$ IS, and its parameterized version ParaD $d$ IS( $k$ ), where the parameter is the size of the distance- $d$ independent set: (1) We first prove that for any $\varepsilon >0$ and any fixed integer $d\ge 3$ , it is $\mathcal{NP}$ -hard to approximate MaxD $d$ IS to within a factor of $n^{1/2-\varepsilon }$ for bipartite graphs of $n$ vertices, and for any fixed integer $d\ge 3$ , ParaD $d$ IS( $k$ ) is $\mathcal{W}[1]$ -hard for bipartite graphs. Then, (2) we prove that for every fixed integer $d\ge 3$ , D $d$ IS remains $\mathcal{NP}$ -complete even for planar bipartite graphs of maximum degree three. Furthermore, (3) we show that if the input graph is restricted to chordal graphs, then D $d$ IS can be solved in polynomial time for any even $d\ge 2$ , whereas D $d$ IS is $\mathcal{NP}$ -complete for any odd $d\ge 3$ . Also, we show the hardness of approximation of MaxD $d$ IS and the $\mathcal{W}[1]$ -hardness of ParaD $d$ IS( $k$ ) on chordal graphs for any odd $d\ge 3$ .  相似文献   

2.
Let $(E,{ \mathcal{A}})$ be a set system consisting of a finite collection ${ \mathcal{A}}$ of subsets of a ground set E, and suppose that we have a function ? which maps ${ \mathcal{A}}$ into some set S. Now removing a subset K from E gives a restriction ${ \mathcal{A}}(\bar{K})$ to those sets of ${ \mathcal{A}}$ disjoint from K, and we have a corresponding restriction $\phi|_{\hspace {.02in}{ \mathcal{A}}(\bar{K})}$ of our function ?. If the removal of K does not affect the image set of ?, that is $\mbox {Im}(\phi|_{\hspace {.02in}{ \mathcal{A}}(\bar{X})})=\mbox {Im}(\phi)$ , then we will say that K is a kernel set of ${ \mathcal{A}}$ with respect to ?. Such sets are potentially useful in optimisation problems defined in terms of ?. We will call the set of all subsets of E that are kernel sets with respect to ? a kernel system and denote it by $\mathrm {Ker}_{\phi}({ \mathcal{A}})$ . Motivated by the optimisation theme, we ask which kernel systems are matroids. For instance, if ${ \mathcal{A}}$ is the collection of forests in a graph G with coloured edges and ? counts how many edges of each colour occurs in a forest then $\mathrm {Ker}_{\phi}({ \mathcal{A}})$ is isomorphic to the disjoint sum of the cocycle matroids of the differently coloured subgraphs; on the other hand, if ${ \mathcal{A}}$ is the power set of a set of positive integers, and ? is the function which takes the values 1 and 0 on subsets according to whether they are sum-free or not, then we show that $\mathrm {Ker}_{\phi}({ \mathcal{A}})$ is essentially never a matroid.  相似文献   

3.
In this paper, we study the Radiation hybrid map construction ( $\mathsf{{RHMC} }$ ) problem which is about reconstructing a genome from a set of gene clusters. The problem is known to be $\mathsf{{NP} }$ -complete even when all gene clusters are of size two and the corresponding problem ( $\mathsf{{RHMC}_2 }$ ) admits efficient constant-factor approximation algorithms. In this paper, for the first time, we consider the more general case when the gene clusters can have size either two or three ( $\mathsf{{RHMC}_3 }$ ). Let ${p\text{- }\mathsf {RHMC} }$ be a parameterized version of $\mathsf{{RHMC} }$ where the parameter is the size of solution. We present a linear kernel for ${p\text{- }\mathsf {RHMC}_3 }$ of size $22k$ that when combined with a bounded search-tree algorithm, gives an FPT algorithm running in $O(6^kk+n)$ time. For ${p\text{- }\mathsf {RHMC}_3 }$ we present a bounded search tree algorithm which runs in $O^*(2.45^k)$ time, greatly improving the previous bound using weak kernels.  相似文献   

4.
We solve a long-standing open problem concerning a discrete mathematical model, which has various applications in computer science and several other fields, including frequency assignment and many other problems on resource allocation. A mixed hypergraph $\mathcal H $ is a triple $(X,\mathcal C ,\mathcal D )$ , where $X$ is the set of vertices, and $\mathcal C $ and $\mathcal D $ are two set systems over $X$ , the families of so-called C-edges and D-edges, respectively. A vertex coloring of a mixed hypergraph $\mathcal H $ is proper if every C-edge has two vertices with a common color and every D-edge has two vertices with different colors. A mixed hypergraph is colorable if it has at least one proper coloring; otherwise it is uncolorable. The chromatic inversion of a mixed hypergraph $\mathcal H =(X,\mathcal C ,\mathcal D )$ is defined as $\mathcal H ^c=(X,\mathcal D ,\mathcal C )$ . Since 1995, it was an open problem wether there is a correlation between the colorability properties of a hypergraph and its chromatic inversion. In this paper we answer this question in the negative, proving that there exists no polynomial-time algorithm (provided that $P \ne NP$ ) to decide whether both $\mathcal H $ and $\mathcal H ^c$ are colorable, or both are uncolorable. This theorem holds already for the restricted class of 3-uniform mixed hypergraphs (i.e., where every edge has exactly three vertices). The proof is based on a new polynomial-time algorithm for coloring a special subclass of 3-uniform mixed hypergraphs. Implementation in C++ programming language has been tested. Further related decision problems are investigated, too.  相似文献   

5.
The one-round discrete Voronoi game, with respect to a n-point user set  $\mathcal {U}$ , consists of two players Player 1 (P1) and Player 2 (P2). At first, P1 chooses a set $\mathcal{F}_{1}$ of m facilities following which P2 chooses another set $\mathcal{F}_{2}$ of m facilities, disjoint from  $\mathcal{F}_{1}$ , where m(=O(1)) is a positive constant. The payoff of P2 is defined as the cardinality of the set of points in $\mathcal{U}$ which are closer to a facility in $\mathcal{F}_{2}$ than to every facility in $\mathcal{F}_{1}$ , and the payoff of P1 is the difference between the number of users in $\mathcal{U}$ and the payoff of P2. The objective of both the players in the game is to maximize their respective payoffs. In this paper, we address the case where the points in $\mathcal{U}$ are located along a line. We show that if the sorted order of the points in $\mathcal{U}$ along the line is known, then the optimal strategy of P2, given any placement of facilities by P1, can be computed in O(n) time. We then prove that for m≥2 the optimal strategy of P1 in the one-round discrete Voronoi game, with the users on a line, can be computed in $O(n^{m-\lambda_{m}})$ time, where 0<λ m <1, is a constant depending only on m.  相似文献   

6.
Given an undirected connected graph \(G=(V(G),E(G),d)\) with a function \(d(\cdot )\ge 0\) on edges and a subset \(S\subseteq V(G)\) of terminals, the minimum diameter terminal Steiner tree problem (MDTSTP) asks for a terminal Steiner tree in \(G\) of a minimum diameter. In the paper, the diameter of a tree refers to the longest of all the distances between two different leaves of the tree. When \(G\) is a complete graph and \(d(\cdot )\) is a metric function, we demonstrate that an optimal solution of MDTSTP is monopolar or dipolar and give an \(O(|S|\cdot |V(G)\setminus S|^2)\) -time exact algorithm. For the nonmetric version of MDTSTP, we present a simple 2-approximation algorithm with a time complexity of \(O(|V(G)\setminus S|\log |S|)\) , as well as two exact algorithms with a time complexity of \(O(|S|^3|V(G)|^2)\) and \(O(|S|\cdot |V(G)\setminus S|^2+|S|^2\cdot |V(G)\setminus S|)\) , respectively.  相似文献   

7.
For an integer $s>0$ and for $u,v\in V(G)$ with $u\ne v$ , an $(s;u,v)$ -path-system of G is a subgraph H of G consisting of s internally disjoint (u, v)-paths, and such an H is called a spanning $(s;u,v)$ -path system if $V(H)=V(G)$ . The spanning connectivity $\kappa ^{*}(G)$ of graph G is the largest integer s such that for any integer k with $1\le k \le s$ and for any $u,v\in V(G)$ with $u\ne v$ , G has a spanning ( $k;u,v$ )-path-system. Let G be a simple connected graph that is not a path, a cycle or a $K_{1,3}$ . The spanning k-connected index of G, written $s_{k}(G)$ , is the smallest nonnegative integer m such that $L^m(G)$ is spanning k-connected. Let $l(G)=\max \{m:\,G$ has a divalent path of length m that is not both of length 2 and in a $K_{3}$ }, where a divalent path in G is a path whose interval vertices have degree two in G. In this paper, we prove that $s_{3}(G)\le l(G)+6$ . The key proof to this result is that every connected 3-triangular graph is 2-collapsible.  相似文献   

8.
Given a finite poset P, let ${\rm La}(n,P)$ denote the largest size of a family of subsets of an n-set that does not contain P as a (weak) subposet. We employ a combinatorial method, using partitions of the collection of all full chains of subsets of the n-set, to give simpler new proofs of the known asymptotic behavior of ${\rm La}(n,P)$ , as n, when P is the r-fork $\mathcal {V}_{r}$ , the four-element N poset $\mathcal {N}$ , and the four-element butterfly-poset $\mathcal {B}$ .  相似文献   

9.
We show that, for any constant $\rho > 1$ , there exists an integer constant $k$ such that the Yao–Yao graph with parameter $k$ defined on a civilized unit disk graph is a geometric spanner of stretch factor $\rho $ . This improves the results of Wang and Li in several aspects, as described in the paper. This partially answers an open problem posed by Demaine, Mitchell and O’Rourke about the spanner properties of Yao–Yao graphs. We also show that the Yao–Yao graph with parameter $k=4$ defined on the complete Euclidean graph is not plane.  相似文献   

10.
A parity walk in an edge-coloring of a graph is a walk along which each color is used an even number of times. A parity edge-coloring (respectively, strong parity edge-coloring) is an edge-coloring in which there is no nontrivial parity path (respectively, open parity walk). The parity edge-chromatic number p(G) (respectively, strong parity edge-chromatic number $\widehat{p}(G)$ ) is the least number of colors in a parity edge-coloring (respectively, strong parity edge-coloring) of G. Notice that $\widehat{p}(G) \ge p(G) \ge \chi'(G) \ge \Delta(G)$ for any graph G. In this paper, we determine $\widehat{p}(G)$ and p(G) for some complete bipartite graphs and some products of graphs. For instance, we determine $\widehat{p}(K_{m,n})$ and p(K m,n ) for mn with n≡0,?1,?2 (mod 2?lg?m?).  相似文献   

11.
Given a tree $T = (V, E)$ with $n$ vertices and a collection of terminal sets $D = \{S_1, S_2, \ldots , S_c\}$ , where each $S_i$ is a subset of $V$ and $c$ is a constant, the generalized multiway cut in trees problem (GMWC(T)) asks to find a minimum size edge subset $E^{\prime } \subseteq E$ such that its removal from the tree separates all terminals in $S_i$ from each other for each terminal set $S_i$ . The GMWC(T) problem is a natural generalization of the classical multiway cut in trees problem, and has an implicit relation to the Densest $k$ -Subgraph problem. In this paper, we show that the GMWC(T) problem is fixed-parameter tractable by giving an $O(n^2 + 2^k)$ time algorithm, where $k$ is the size of an optimal solution, and the GMWC(T) problem is polynomial time solvable when the problem is restricted in paths.We also discuss some heuristics for the GMWC(T) problem  相似文献   

12.
An ordered labelled tree is a tree where the left-to-right order among siblings is significant. Ordered labelled forests are sequences of ordered labelled trees. Given two ordered labelled forests $F$ and $G$ , the local forest similarity is to find two sub-forests $F^{\prime }$ and $G^{\prime }$ of $F$ and $G$ respectively such that they are the most similar over all possible $F^{\prime }$ and $G^{\prime }$ . In this paper, we present efficient algorithms for the local forest similarity problem for two types of sub-forests: sibling subforests and closed subforests. Our algorithms can be used to locate the structurally similar regions in RNA secondary structures since RNA molecules’ secondary structures could be represented as ordered labelled forests.  相似文献   

13.
An \(m\) -distinct-coloring is a proper vertex-coloring \(c\) of a graph \(G\) if for each vertex \(v\in V\) , any color appears in at most one of \(N_0(v)\) , \(N_1(v)\) , \(\ldots \) , and \(N_m(v)\) , where \(N_i(v)\) is the set of vertices at distance \(i\) from \(v\) . In this note, we show that if \(G\) is \(C_{2m+1}\) -free which is assigned an \((m+1)\) -distinct-coloring \(c\) , then \(\alpha (G)c(G)^{1/m}\ge \Omega \Big (\sum _{v} c(v)^{1/m}\Big )\) , where \(c(G)\) is the number of colors used in \(c\) and \(c(v)\) is the number of different colors appearing in \(N_1(v)\) . Moreover, we obtain that if \(G\) has \(N\) vertices and it contains neither \(C_{2m+1}\) nor \(C_{2m}\) , then \(\alpha (G)\ge \Omega \big ((N\log N)^{m/(m+1)}\big )\) . The algorithm in the proof for the first result is random, and that for the second is constructive.  相似文献   

14.
Suppose \(d\) is a positive integer. An \(L(d,1)\) -labeling of a simple graph \(G=(V,E)\) is a function \(f:V\rightarrow \mathbb{N }=\{0,1,2,{\ldots }\}\) such that \(|f(u)-f(v)|\ge d\) if \(d_G(u,v)=1\) ; and \(|f(u)-f(v)|\ge 1\) if \(d_G(u,v)=2\) . The span of an \(L(d,1)\) -labeling \(f\) is the absolute difference between the maximum and minimum labels. The \(L(d,1)\) -labeling number, \(\lambda _d(G)\) , is the minimum of span over all \(L(d,1)\) -labelings of \(G\) . Whittlesey et al. proved that \(\lambda _2(Q_n)\le 2^k+2^{k-q+1}-2,\) where \(n\le 2^k-q\) and \(1\le q\le k+1\) . As a consequence, \(\lambda _2(Q_n)\le 2n\) for \(n\ge 3\) . In particular, \(\lambda _2(Q_{2^k-k-1})\le 2^k-1\) . In this paper, we provide an elementary proof of this bound. Also, we study the \(L(1,1)\) -labeling number of \(Q_n\) . A lower bound on \(\lambda _1(Q_n)\) are provided and \(\lambda _1(Q_{2^k-1})\) are determined.  相似文献   

15.
Graph coloring has interesting real-life applications in optimization, computer science and network design, such as file transferring in a computer network, computation of Hessians matrix and so on. In this paper, we consider one important coloring, linear arboricity, which is an improper edge coloring. Moreover, we study linear arboricity on planar graphs with maximum degree \(\varDelta \ge 7\) . We have proved that the linear arboricity of \(G\) is \(\lceil \frac{\varDelta }{2}\rceil \) , if for each vertex \(v\in V(G)\) , there are two integers \(i_v,j_v\in \{3,4,5,6,7,8\}\) such that any two cycles of length \(i_v\) and \(j_v\) , which contain \(v\) , are not adjacent. Clearly, if \(i_v=i, j_v=j\) for each vertex \(v\in V(G)\) , then we can easily get one corollary: for two fixed integers \(i,j\in \{3,4,5,6,7,8\}\) , if there is no adjacent cycles with length \(i\) and \(j\) in \(G\) , then the linear arboricity of \(G\) is \(\lceil \frac{\varDelta }{2}\rceil \) .  相似文献   

16.
The adjacent vertex distinguishing total coloring of planar graphs   总被引:3,自引:3,他引:0  
An adjacent vertex distinguishing total coloring of a graph G is a proper total coloring of G such that any pair of adjacent vertices have distinct sets of colors. The minimum number of colors needed for an adjacent vertex distinguishing total coloring of G is denoted by $\chi''_{a}(G)$ . In this paper, we characterize completely the adjacent vertex distinguishing total chromatic number of planar graphs G with large maximum degree Δ by showing that if Δ≥14, then $\varDelta+1\leq \chi''_{a}(G)\leq \varDelta+2$ , and $\chi''_{a}(G)=\varDelta+2$ if and only if G contains two adjacent vertices of maximum degree.  相似文献   

17.
Let $\chi'_{a}(G)$ and Δ(G) denote the acyclic chromatic index and the maximum degree of a graph G, respectively. Fiam?ík conjectured that $\chi'_{a}(G)\leq \varDelta (G)+2$ . Even for planar graphs, this conjecture remains open with large gap. Let G be a planar graph without 4-cycles. Fiedorowicz et al. showed that $\chi'_{a}(G)\leq \varDelta (G)+15$ . Recently Hou et al. improved the upper bound to Δ(G)+4. In this paper, we further improve the upper bound to Δ(G)+3.  相似文献   

18.
We investigate a natural online version of the well-known Maximum Directed Cut problem on DAGs. We propose a deterministic algorithm and show that it achieves a competitive ratio of $\frac{3\sqrt{3}}{2}\approx 2.5981$ . We then give a lower bound argument to show that no deterministic algorithm can achieve a ratio of $\frac{3\sqrt{3}}{2}-\epsilon$ for any ??>0 thus showing that our algorithm is essentially optimal. Then, we extend our technique to improve upon the analysis of an old result: we show that greedily derandomizing the trivial randomized algorithm for MaxDiCut in general graphs improves the competitive ratio from 4 to 3, and also provide a tight example.  相似文献   

19.
A function \(f:V(G)\rightarrow \mathcal P (\{1,\ldots ,k\})\) is called a \(k\) -rainbow dominating function of \(G\) (for short \(kRDF\) of \(G)\) if \( \bigcup \nolimits _{u\in N(v)}f(u)=\{1,\ldots ,k\},\) for each vertex \( v\in V(G)\) with \(f(v)=\varnothing .\) By \(w(f)\) we mean \(\sum _{v\in V(G)}\left|f(v)\right|\) and we call it the weight of \(f\) in \(G.\) The minimum weight of a \( kRDF\) of \(G\) is called the \(k\) -rainbow domination number of \(G\) and it is denoted by \(\gamma _{rk}(G).\) We investigate the \(2\) -rainbow domination number of Cartesian products of cycles. We give the exact value of the \(2\) -rainbow domination number of \(C_{n}\square C_{3}\) and we give the estimation of this number with respect to \(C_{n}\square C_{5},\) \((n\ge 3).\) Additionally, for \(n=3,4,5,6,\) we show that \(\gamma _{r2}(C_{n}\square C_{5})=2n.\)   相似文献   

20.
We consider two parallel machines scheduling problems with a single server. For the general case we present an online LPT algorithm with competitive ratio 2, and give a lower bound $\frac{\sqrt{5} + 1}{2}$ . We also apply the online LPT algorithm to the special case where all the setup times are equal to 1. We show that the competitive ratio is 1.5, and no online algorithm can has a competitive ratio less than  $\sqrt{2}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号